(本小题满分8分)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.
如图,以Rt△ABC的边AC为直径的⊙O交斜边AB于点D,点F为BC上一点,AF交⊙O于点E,且DE∥AC.(1)求证:∠CAF=∠B.(2)若⊙O的半径为4,AE=2AD,求DE的长.
已知关于x的一元二次方程m2x2+2(m﹣1)x+1=0有实数根.(1)求实数m的范围;(2)由(1),该方程的两根能否互为相反数?请证明你的结论.
某同学报名参加校运动会,有以下5个项目可供选择: 径赛项目:100m,200m,400m(分别用A1、A2、A3表示); 田赛项目:跳远,跳高(分别用B1、B2表示). (1)该同学从5个项目中任选一个,恰好是田赛项目的概率为 ; (2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
如图,⊙P的直径AB=10,点C在半圆上,BC=6.PE⊥AB交AC于点E,求PE的长.