初中数学

如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而  (填“增大”或“减小”).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分6分)
点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·湖州)(本小题10分)
我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:

⑴2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额-成本)
⑵2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元。若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
⑶已知甲鱼每亩需要饲料500㎏,桂鱼每亩需要饲料700㎏,根据⑵中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少㎏?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·湖州)(本小题6分)
已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点。
⑴求k,b的值;
⑵若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现
有A、B两水库决定各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙
地30千米;从B地到甲地60千米,到乙地45千米.
⑴设从A水库调往甲地的水量为x万吨,完成下表

⑵请设计一个调运方案,使水的调运总量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

北京时间2011年3月11日46分,日本东部海域发生9级强烈地震并引发海啸.在其灾区,某药品的需求量急增.如图所示,在平常对某种药品的需求量y1(万件).供应量y2(万件)与价格x(元∕件)分别近似满足下列函数关系式:,需求量为0时,即停止供应.当时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)求该药品的稳定价格与稳定需求量.
(2)价格在什么范围内,该药品的需求量低于供应量?
(3)由于该地区灾情严重,政府部门决定对药品供应方提供价格补贴来提高供货价格,以提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·漳州)(满分13分)如图,直线y=-2x+2与x轴、y轴分别交于AB两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD

(1)填空:点C的坐标是(_  ▲   ▲  ),
D的坐标是(_  ▲  _  ▲  );
(2)设直线CDAB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,
请求出所有满足条件的点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:

月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
560
580
600
620
640
660
680
700
720

随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:

(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.
(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

小王从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用的时间x(小时)之间的函数关系如图所示。
(1)小王从B地返回A地用了多少小时?
(2)求小王出发6小时后距A地多远?
(3)在A、B之间友谊C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C两地相距多远?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备
后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图
象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.
(2)求乙组加工零件总量的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知


交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点AACy轴于点C,过点B作直线ly轴.动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线lx轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以APR为顶点的三角形的面积为8?
②是否存在以APQ为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度(厘米)与注水时间(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:
(1)图2中折线表示________槽中水的深度与注水时间的关系,线段表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点的纵坐标表示的实际意义是________________________________;
(2)注水多长时间时,甲、乙两个水槽中水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

因长期干旱,甲水库蓄水量降到了
正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速
供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,
又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过
40h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相
同,图中的折线表示甲水库蓄水量Q (万m3) 与时间t (h) 之间的函数关系.
求:(1)线段BC的函数表达式;
(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;
(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?

来源:2011年江苏省连云港市中考数学试题
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP(图2)的夹角记为y1,时针与OP的夹角记为y2度(夹角是指不大于平角的角),旋转时间记为t分钟.观察结束后,他利用获得的数据绘制成图象(图3),并求出y1与t的函数关系式:
请你完成:
(1)求出图3中y2与t的函数关系式;
(2)直接写出A、B两点的坐标,并解释这两点的实际意义;
(3)若小华继续观察一个小时,请你在题图3中补全图象.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线分别交轴,轴于AB两点,点COB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点AB的坐标,并求直线ABCD交点的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P,垂足为H,连接.设点P的运动时间为秒.
①若△MPH与矩形AOCD重合部分的面积为1,求的值;
②点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题