初中数学

如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是(  )

A.x<1 B.x<﹣2
C.﹣2<x<0或x>1 D.x<﹣2或0<x<1
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某通讯公司推出了①②两种收费方式,收费y1,y2 (元)与通讯时间x(分钟)之间的函数关系如图所示,则使不等式kx+30<x成立的x的取 值范围是          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直线y=x-a与y=-x+b相交于点(1,0),则不等式x-a≥-x+b的解集是               

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

小刚从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度依然保持不变,那么小刚从学校回到家需要的时间是_________分钟.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数y=x-1的图象是(  )

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,点P是在□ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系         

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将直线y=3x+1平移向下平移4个单位,则平移后的解析式为     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.

(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点A的横坐标为2,当时,x的取值范围是( )

A.x<﹣2或x>2
B.x<﹣2或0<x<2
C.﹣2<x<0或0<x<﹣2
D.﹣2<x<0或x>2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).

(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;
(2)当S=9时,求点P的坐标;
(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是( )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

直线y=kx+b不经过第四象限,则(  )

A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥0
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值试题