下列函数中,当x>0时,y随x的增大而减小的是( )
A.y= | B.y=- | C.y="3x+2" | D.y=x2-3 |
二次函数y=ax2+bx+c的图像如图所示,则①abc;②b2-4ac;③2a+b;④a+b+c这四个式子中,值为负数的有个
A.1个 | B.2个 | C.3个 | D.4个 |
如图,抛物线y=x2+bx+c经过A(-1,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式及顶点坐标;
(2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式;
(3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.
如图,已知:无论常数k为何值,直线l:y=kx+2k+2总经过定点A,若抛物线y=ax2过A,B(1,b),C(-1,c)三点.
(1)请直线写出点A坐标及a的值;
(2)当直线l过点B时,求k的值;
(3)在y轴上一点P到A,C的距离和最小,求P点坐标;
(4)在(2)的条件下,x取 值时,ax2<kx+2k+2.
已知:抛物线(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,),与x轴交于A、B两点(A在B的左边).
(1)求此抛物线的表达式;
(2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OP=x,MQ=1,求y1与x的函数关系式,并写出自变量x的取值范围;
(3)①在(2)的条件下是否存在点P,使△PQB是PB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由;
②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.
如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,P是此图象上的一动点.设P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣(0≤x≤5),给出以下四个结论:
①AF=2;②BF=5;③OA=5;④OB=4
其中正确结论的序号是 .
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).
(1)求该抛物线的解析式及顶点M坐标;
(2)求△BCM面积与△ABC面积的比;
(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.
如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点.设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是( )
A. | B. | C. | D. |
在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的函数表达式.
(2)足球第一次落地点距守门员多少米?(取)
(3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取)
已知下列函数:
①y=x2;
②y=-x2;
③y=2x2;
④y=(x-1)2+2.
其中通过平移、旋转、轴对称变换得到函数y=x2+2x-3的图象的有 (填写所有正确选项的序号).
如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
将抛物线的图象向右平移3个单位,再向上平移4个单位后,得到的新抛物线解析式是 .