如图中的三条抛物线形状相同,关于这三条抛物线叙述错误的是( )
A.三条抛物线的表达式中二次项的系数不一定相同 |
B.三条抛物线的顶点的横坐标相同 |
C.当时,三条抛物线各自的值都随的增大而增大 |
D.三条抛物线与直线都无交点 |
二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3,0)、B(1,0)两点,与y轴交于点C(0,-3m)(其中m>0),顶点为D.
(1)用含m的代数式分别表示a、b、c;
(2)如图,当m取何值时,△ADC为直角三角形?
已知二次函数y=x2+bx-4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x="1" B.x="2" C.x="-1" D.x=-2
已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:
x |
… |
-1 |
0 |
1 |
2 |
3 |
… |
y |
… |
-6 |
-1 |
2 |
3 |
2 |
… |
则当y<-1时,x的取值范围是 .
已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A, B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大.
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一 边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.
(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲= ,y乙= ;
(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?
将抛物线y=(x-1)2+3向右平移1个单位,再向上平移3个单位后所得抛物线的表达式为( )
A.y=(x-2)2 | B.y=x2 | C.y=x2+6 | D.y=(x-2)2+6 |
抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).
(1)求抛物线的解析式;
(2)求抛物线与坐标轴的交点坐标;
(3)①当x取什么值时,y>0?②当x取什么值时,y的值随x的增大而减小?
用配方法将二次函数y=x²-2x+1写成y=a(x-h)²+k的形式是( )
A.y=(x-2)²-1 | B.y=(x-1)²-1 |
C.y=(x-2)²-3 | D.y=(x-1)²-3 |
二次函数y=x2的图象向上平移2个单位,得到新的图象的二次函数表达式是( )
A.y=x2-2 | B.y=(x-2)2 |
C.y=x2+2 | D.y=(x+2)2 |
关于抛物线y=(x-1)2-2,下列说法中错误的是
A.顶点坐标为(1,-2) |
B.对称轴是直线x=1 |
C.当x>1时,y随x的增大而减小 |
D.开口方向向上 |
关于二次函数y=(x-1)2+2,则下列说法正确的是( )
A.当x=1时,y有最大值为2 |
B.当x=1时,y有最小值为2 |
C.当x=-1时,y有最大值为2 |
D.当x=-1时,y有最小值为2 |