如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为( )
A.12 m | B.13.5 m | C.15 m | D.16.5 m |
小明沿着坡比为1:的山坡向上走了600m,则他升高了( )
A.m | B.200m | C.300 m | D.200m |
把一块直尺与一块三角板如图放置,若,则∠2的度数为( )
A.120° | B.135° | C.145° | D.150° |
(本题10分)
在向红星镇居民介绍王家庄位置的时候,我们可以这样说:如图,在以红星镇为原点,正东方向为x轴正方向,正北方向为y轴正方向的平面直角坐标系(1单位长度表示的实际距离为1km)中,王家庄的坐标为(5,5);也可以说,王家庄在红星镇东北方向km的地方。
还有一种方法广泛应用于航海、航空、气象、军事等领域。如右下图:在红星镇所建的雷达站O的雷达显示屏上,把周角每15°分成一份,正东方向为0°,相邻两圆之间的距离为1个单位长度(1单位长度表示的实际距离为1km),现发现2个目标,我们约定用(10,15°)表示点M在雷达显示器上的坐标,则:
(1)点N可表示为 ;王家庄位置可表示为 ;点N关于雷达站点0成中心对称的点P的坐标为 ;
(2)S△OMP= ;
(3)若有一家大型超市A在图中(4,30°)的地方,请直接标出点A,并将超市A与雷达站O连接,现准备在雷达站周围建立便民服务店B,使得△ABO为底角30°的等腰三角形,请直接写出B点在雷达显示屏上的坐标.
(本题9分)甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:
(1)请你在A,B,C,D,E五个点任意选择一个点解释它的实际意义;
(2)求线段DE对应的函数关系式;
(3)当轿车出发1h后,两车相距多少千米;
(4)当轿车出发几小时后两车相距30km?
(本题8分)如图,在梯形ABCD中,AD//BC,E是AD的中点,BC=5,AD=12,梯形高为4,∠A =45°,P为AD边上的动点.
(1)当PA的值为____________时,以点P、B、C、E为顶点的四边形为直角梯形;
(2)当PA的值为____________时,以点P、B、C、E为顶点的四边形为平行四边形;
(3)点P在AD边上运动的过程中,以P、B、C、E为顶点的四边形能否构成菱形?如果能,求出PA长.如果不能,也请说明理由.
(本题8分)如图,四边形ABCD是矩形,点O在矩形上方,点B绕着点O逆时针旋转后的对应点为点C.
(1)画出点A绕着点O逆时针旋转后的对应点E;
(2)连接CE,证明:CO平分∠ECD
(3)在(1)(2)的条件下,连接ED,猜想ED与CO的位置关系,并证明你的结论.
(本题8分)阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.
解决下列问题:
(1)菱形的“二分线”是 ;
(2)三角形的“二分线”是 ;
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,简述做法.
图1 图2
(本题7分)小明本学期的数学成绩如下表所示:
测验类别 |
平时 |
a |
b |
c |
|||
测试1 |
测试2 |
测试3 |
测试4 |
平时平均数 |
期中考试 |
期末考试 |
|
成绩 |
108 |
103 |
101 |
108 |
|
110 |
114 |
(1)六次考试的中位数和众数分别是什么?
(2)请计算小明该学期的数学平时平均成绩;
(3)如果学期的总评成绩是根据如图所示的比例计算所得,已知小明该学期的数学总评成绩为111分,请计算出总评成绩中期中、期末成绩各自所占的比例.
甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是
A.①②③ | B.仅有①② | C.仅有①③ | D.仅有②③ |
(10分) 某通讯公司推出①、②两种手机通话月收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的月通话时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是 (填①或②),月租费是 元;
(2)分别求出①,②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户月通话时间的多少,给出经济实惠的选择建议
2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.
解决问题:如图,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.
在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:
(1)求这50个样本数据的平均数、众数和中位数;
(2)根据样本数据,估算该校1200名学生共参加了多少次活动.
如图甲所示,在直角梯形ABCD中,AB∥DC,.动点P从点B出发,沿梯形的边由B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y.把y看作x的函数,函数的图像如图乙所示,则△ABC的面积为( )
A.10 | B.16 | C.18 | D.32 |
如图,矩形的长和宽分别为8cm和4cm,截去一个宽为x的小矩形(阴影部分)后余下另一个矩形的面积S与x之间的关系可表示为( ).
A.S=4x | B.S=4(8-x) | C.S=8(4-x) | D.S=8x |