(本小题满分10分)建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?
(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元. 在(2)的条件下,
新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收
入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?
为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和
排球,已知篮球和排球的单价比为3:2,单价和为160元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?
某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院
慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一
个老人不足5盒,但至少分得一盒.
(1)设敬老院有名老人,则这批牛奶共有多少盒?(用含的代数式表示).
(2)该敬老院至少有多少名老人?最多有多少名老人?
生活中,在分析研究比赛成绩时经常要考虑不等关系.例如:一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中61环,如果他要打破88环(每次射击以1到10的整数环计数)的记录,问第8次射击不能少于多少环?
我们可以按以下思路分析:
首先根据最后二次射击的总成绩可能出现的情况,来确定要打破88环的记录,第8次射击需要得到的成绩,并完成下表:
最后二次射击总成绩 |
第8次射击需得成绩 |
20环 |
|
19环 |
|
18环 |
|
根据以上分析可得如下解答:
解:设第8次射击的成绩为x环,则可列出一个关于x的不等式:( )解得( )
所以第8次设计不能少于 ( )环