不等式组 的最小整数解是( )
A.0 | B.-1 | C.1 | D.2 |
解不等式组请结合题意填空,完成本题的解答:
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来: .
(4)原不等式组的解集为 .
不等式(3x+4)(3x﹣4)<9(x﹣2)(x+3)的最小整数解为 .
(满分8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.
若>,则下列不等式成立的是( )
A.< |
B.> |
C.< |
D.> |
已知关于x的方程4x+2m+1=2x+5的解是负数.
(1)求m的取值范围;
(2)在(1)的条件下,解关于x的不等式2(x﹣2)>mx+3.
解不等式2(x+1)﹣1≥4x+3,并把它的解集在数轴上表示出来.
小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块?
(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?
若成立,则下列不等式成立的是( )
A. | B. |
C. | D. |