小明、小颖、和小凡都想去看山西第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去.游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜.关于这个游戏,下列判断正确的是( )
A.三个人获胜的概率相同 |
B.小明获胜的概率大 |
C.小颖获胜的概率大 |
D.小凡获胜的概率大 |
义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译,若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )
A. | B. | C. | D. |
抛掷一枚质地均匀的正方体骰子,其六个面上分别写有数字1,2,3,4,5,6.
(1)向上一面点数为奇数;
(2)向上一面点数不小于3;
(3)向上一面点数小于2,
则将上述事件的序号按发生的可能性从小到大的顺序排列为( )
A.(1)(3)(2) | B.(2)(1)(3) |
C.(3)(2)(1) | D.(3)(1)(2) |
在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( )。
A. | B. | C. | D. |
一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率PA=.如图,现向等边△ABC的外接圆区域内射入一个点,则该点落在△ABC内切圆中的概率是( )
A.1:4 | B.1:2 | C. | D.3:4 |
一只盒子中有红球个,白球个,黑球个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么与的关系是( )
A., | B. | C. | D. |
右图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留4天.则此人在该市停留期间有且仅有1天空气质量优良的概率是( )
A. | B. | C. | D. |
小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:
抛掷次数 |
100 |
200 |
300 |
400 |
500 |
正面朝上的频数 |
53 |
98 |
156 |
202 |
244 |
若抛掷硬币的次数为1000,则“正面朝上”的频数最接近
A.20B.300C.500D.800
某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
某射击运动员在同一条件下的射击成绩记录如下:
射击次数 |
20 |
80 |
100 |
200 |
400 |
1000 |
"射中九环以上"的次数 |
18 |
68 |
82 |
168 |
327 |
823 |
"射中九环以上"的频率(结果保留两位小数) |
0.90 |
0.85 |
0.82 |
0.84 |
0.82 |
0.82 |
根据频率的稳定性,估计这名运动员射击一次时"射中九环以上"的概率约是
A. |
0.90 |
B. |
0.82 |
C. |
0.85 |
D. |
0.84 |
一个布袋里有6只颜色不同的球,其中2个红球,4个白球,从布袋里任意摸出一个球,则摸出的球的红球的概率为( )
A. | B. | C. | D. |
同时投掷两个骰子,点数和为5的概率是( )
A. | B. | C. | D. |
在□4a□4空格□中,任意填上“+”或“-”,在所得到的所有代数式中,能构成完全平方式的概率是( )
A.1 | B. | C. | D. |
有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?( )
A. | B. | C. | D. |
一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为估计白球数,小刚向其中放入8个黑球摇匀后,从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球200次,其中44次摸到黑球,你估计盒中大约有白球( )
A.20个 | B.28个 | C.36个 | D.无法估计 |