某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分 均为不小于60的整数),并将测试成绩分为四个等级:基本合格 ,合格 ,良好 ,优秀 ,制作了如图统计图(部分信息未给出).
由图中给出的信息答案下列问题:
(1)求测试成绩为合格的学生人数,并补全频数直方图.
(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.
(3)这次测试成绩的中位数是什么等级?
(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?
某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.
最喜爱的传统文化项目类型频数分布表
项目类型 |
频数 |
频率 |
书法类 |
18 |
|
围棋类 |
14 |
0.28 |
喜剧类 |
8 |
0.16 |
国画类 |
|
0.20 |
根据以上信息完成下列问题:
(1)直接写出频数分布表中 的值;
(2)补全频数分布条形图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
组别 |
分数段(分 |
频数 |
频率 |
组 |
|
30 |
0.1 |
组 |
|
90 |
|
组 |
|
|
0.4 |
组 |
|
60 |
0.2 |
(1)在表中: , ;
(2)补全频数分布直方图;
(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;
(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中 、 两组学生的概率是多少?并列表或画树状图说明.
为提高公民法律意识,大力推进国家工作人员学法用法工作,今年年初某区组织本区900名教师参加“如法网”的法律知识考试,该区 学校参考教师的考试成绩绘制成如下统计图和统计表(满分100分,考试分数均为整数,其中最低分76分)
分数 |
人数 |
85.5以下 |
10 |
85.5以上 |
35 |
96.5以上 |
8 |
(1)求 学校参加本次考试的教师人数;
(2)若该区各学校的基本情况一致,试估计该区参考教师本次考试成绩在90.5分以下的人数;
(3)求 学校参考教师本次考试成绩 分之间的人数占该校参考人数的百分比.
为庆祝中国共产党建党100周年,某校开展了"党在我心中"党史知识竞赛,竞赛得分为整数,王老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成不完整的统计图表.
组别 |
成绩 (分 |
频数 |
|
|
6 |
|
|
14 |
|
|
|
|
|
|
|
|
|
请你根据统计图表提供的信息解答下列问题:
(1)上表中的 , , .
(2)这次抽样调查的成绩的中位数落在哪个组?请补全频数分布直方图.
(3)已知该校有1000名学生参赛,请估计竞赛成绩在90分以上的学生有多少人?
(4)现要从 组随机抽取两名学生参加上级部门组织的党史知识竞赛, 组中的小丽和小洁是一对好朋友,请用列表或画树状图的方法求出恰好抽到小丽和小洁的概率.
为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
课外阅读时间(单位:小时) |
频数(人数) |
频率 |
|
2 |
0.04 |
|
3 |
0.06 |
|
15 |
0.30 |
|
|
0.50 |
|
5 |
|
请根据图表信息回答下列问题:
(1)频数分布表中的 , ;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?
从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在 分(含80分,不含90分)的学生为抽查人数的 ,且规定成绩大于或等于100分为优秀.
(1)求被抽查学生人数及成绩在 分的学生人数 ;
(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;
(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.
某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.
身高分组 |
频数 |
频率 |
|
3 |
0.06 |
|
7 |
0.14 |
|
|
0.28 |
|
13 |
|
|
9 |
0.18 |
|
3 |
0.06 |
|
1 |
0.02 |
根据以上统计图表完成下列问题:
(1)统计表中 , ,并将频数分布直方图补充完整;
(2)在这次测量中两班男生身高的中位数在: 范围内;
(3)在身高 的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.
新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长 (单位:小时)的情况,在全市范围内随机抽取了 名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.
根据图中信息,解答下列问题:
(1)在这次调查活动中,采取的调查方式是 (填写“全面调查”或“抽样调查” , ;
(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“ ”范围的概率是 ;
(3)若该市有15000名初中生,请你估计该市每日线上学习时长在“ ”范围的初中生有 名.
杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).
甲组杨梅树落果率频数分布表
落果率 |
组中值 |
频数(棵 |
|
|
12 |
|
|
4 |
|
|
2 |
|
|
1 |
|
|
1 |
(1)甲、乙两组分别有几棵杨梅树的落果率低于 ?
(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;
(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.
某校为了增强学生的疫情防控意识,组织全校2000名学生进行了疫情防控知识竞赛.从中随机抽取了 名学生的竞赛成绩(满分100分),分成四组: ; ; ; ,并绘制出不完整的统计图:
(1)填空: ;
(2)补全频数分布直方图;
(3)抽取的这 名学生成绩的中位数落在 组;
(4)若规定学生成绩 为优秀,估算全校成绩达到优秀的人数.
某校开展主题为"防疫常识知多少"的调查活动,抽取了部分学生进行调查,调查问卷设置了 :非常了解、 :比较了解、 :基本了解、 :不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:
等级 |
频数 |
频率 |
|
20 |
0.4 |
|
15 |
|
|
10 |
0.2 |
|
|
0.1 |
(1)频数分布表中 , ,将频数分布直方图补充完整;
(2)若该校有学生1000人,请根据抽样调查结果估算该校"非常了解"和"比较了解"防疫常识的学生共有多少人?
(3)在"非常了解"防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.
某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在 及以上的生猪有 头.
现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整)
步数 |
频数 |
频率 |
|
8 |
|
|
15 |
0.3 |
|
12 |
|
|
|
0.2 |
|
3 |
0.06 |
|
|
0.04 |
请根据以上信息,解答下列问题:
(1)写出 , , , 的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).
组别 |
时间(小时) |
频数(人数) |
频率 |
|
|
20 |
0.05 |
|
|
|
0.3 |
|
|
140 |
0.35 |
|
|
80 |
0.2 |
|
|
40 |
0.1 |
请根据图表中的信息,解答下列问题:
(1)表中的 ,将频数分布直方图补全;
(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?
(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.