初中数学

某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.

被抽样的学生视力情况频数表

组别

视力段

频数

A

5 . 1 x 5 . 3

25

B

4 . 8 x 5 . 0

115

C

4 . 4 x 4 . 7

m

D

4 . 0 x 4 . 3

52

(1)求组别 C 的频数 m 的值.

(2)求组别 A 的圆心角度数.

(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?

来源:2020年浙江省衢州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.

组别

发言次数 n

百分比

A

0 n < 3

10 %

B

3 n < 6

20 %

C

6 n < 9

25 %

D

9 n < 12

30 %

E

12 n < 15

10 %

F

15 n < 18

m %

请你根据所给的相关信息,解答下列问题:

(1)本次共随机采访了        名教师, m =         

(2)补全条形统计图;

(3)已知受访的教师中, E 组只有2名女教师, F 组恰有1名男教师,现要从 E 组、 F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:

信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;

信息二:

信息三:

近一周家务劳动时间分布表

时间/小时

t 1

1 t 2

2 t 3

3 t 4

t 4

人数/人

5

8

12

7

3

信息四:

劳动能力量化成绩与近一周家务劳动总时间统计表

成绩/分

人数

时间/小时

6

7

8

9

10

t 1

4

1

0

0

0

1 t 2

0

6

1

1

0

2 t 3

0

0

9

3

0

3 t 4

0

1

1

3

2

t 4

0

0

0

1

2

根据以上信息,解决下列问题:

(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为  分;

(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)

①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:  

②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:  

③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在 2 t 3 的时间段:  

(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:

组别

分数段(分 )

频数

频率

A

60 x < 70

30

0.1

B

70 x < 80

90

n

C

80 x < 90

m

0.4

D

90 x < 100

60

0.2

(1)在表中: m =    n =   

(2)补全频数分布直方图;

(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在  组;

(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中 A C 两组学生的概率是多少?并列表或画树状图说明.

来源:2017年四川省乐山市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟) :

306070103011570607590157040751058060307045

对以上数据进行整理分析,得到下列表一和表二:

表一

时间 t (单位:分钟)

0 t < 30

30 t < 60

60 t < 90

90 t < 120

人数

2

a

10

b

表二

平均数

中位数

众数

60

c

d

根据以上提供的信息,解答下列问题:

(1)填空

a =        b =       

c =       d =       

(2)如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.

来源:2019年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成 A B C D E F 六个等级,并绘制成如下两幅不完整的统计图表.

等级

得分 x (分 )

频数(人 )

A

95 x 100

4

B

90 x < 95

m

C

85 x < 90

n

D

80 x < 85

24

E

75 x < 80

8

F

70 x < 75

4

请根据图表提供的信息,解答下列问题:

(1)本次抽样调查样本容量为      ,表中: m =     n =    ;扇形统计图中, E 等级对应扇形的圆心角 α 等于   度;

(2)该校决定从本次抽取的 A 等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.

来源:2017年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:

质量     / kg

组中值

频数(只     )

0 . 9 x < 1 . 1

1.0

6

1 . 1 x < 1 . 3

1.2

9

1 . 3 x < 1 . 5

1.4

a

1 . 5 x < 1 . 7

1.6

15

1 . 7 x < 1 . 9

1.8

8

根据以上信息,解答下列问题:

(1)表中 a =    ,补全频数分布直方图;

(2)这批鸡中质量不小于 1 . 7 kg 的大约有多少只?

(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元 / kg 的价格售出这批鸡后,该村贫困户能否脱贫?

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.

每天课外阅读时间 t / h

频数

频率

0 < t 0 . 5

24

0 . 5 < t 1

36

0.3

1 < t 1 . 5

0.4

1 . 5 < t 2

12

b

合计

a

1

根据以上信息,回答下列问题:

(1)表中 a =        b =      

(2)请补全频数分布直方图;

(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.

(1)以下三种抽样调查方案:

方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;

方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;

方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.

其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是   (填写“方案一”、“方案二”或“方案三” )

(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表 ( 90 分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为 x 分)

样本容量

平均分

及格率

优秀率

最高分

最低分

100

83.59

95 %

40 %

100

52

分数段

50 x < 60

60 x < 70

70 x < 80

80 x < 90

90 x 100

频数

5

7

18

30

40

结合上述信息解答下列问题:

①样本数据的中位数所在分数段为   

②全校1565名学生,估计竞赛分数达到“优秀”的学生有   人.

来源:2021年云南省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

甲、乙两城市某月1日 ~ 10 日中午12时的气温(单位: ° C ) 如下:

22 20 25 22 18 23 13 27 27 22

21 22 24 18 28 21 18 19 26 18

整理数据:这两组数据的频数分布表如表一.

分析数据:这两组数据的平均数、中位数、众数和方差如表二所示.

表一

分组

频数

10 x < 15

1

0

15 x < 20

1

a

20 x < 25

5

b

25 x < 30

3

2

表二

统计量

平均数

c

21.5

中位数

22

d

众数

22

e

方差

16.09

11.25

请填空:

(1)在上表中, a =    b =    c =    d =    e =   

(2)  城的气温变化较小;

(3)  城的气温较高,理由是  

来源:2018年广西河池市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:

时间(小时)

 频数(人数)

 频率

2 t < 3

4

0.1

3 t < 4

10

0.25

4 t < 5

a

0.15

5 t < 6

8

b

6 t < 7

12

0.3

合计

40

1

(1)表中的 a =    b =   

(2)请将频数分布直方图补全;

(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:

成绩分组

频数

频率

50 x < 60

8

0.16

60 x < 70

12

a

70 x < 80

0.5

80 x < 90

3

0.06

90 x 100

b

c

合计

1

(1)写出 a b c 的值;

(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;

(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).

甲组杨梅树落果率频数分布表

落果率

组中值

频数(棵     )

0 x < 10 %

5 %

12

10 % x < 20 %

15 %

4

20 % x < 30 %

25 %

2

30 % x < 40 %

35 %

1

40 % x < 50 %

45 %

1

(1)甲、乙两组分别有几棵杨梅树的落果率低于 20 %

(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;

(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日 16 : 20 ,全球接种“新冠”疫苗的比例为 18 . 29 % ;中国累计接种4.2亿剂,占全国人口的 29 . 32 % .以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:

甲医院

乙医院

年龄段

频数

频率

频数

频率

18 - 29 周岁

900

0.15

400

0.1

30 - 39 周岁

a

0.25

1000

0.25

40 - 49 周岁

2100

b

c

0.225

50 - 59 周岁

1200

0.2

1200

0.3

60周岁以上

300

0.05

500

0.125

(1)根据上面图表信息,回答下列问题:

①填空: a =    b =    c =   

②在甲、乙两医院当天接种疫苗的所有人员中, 40 - 49 周岁年龄段人数在扇形统计图中所占圆心角为   

(2)若 A B C 三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋 500 g ,与之相差大于 10 g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:

[ 收集数据 ] 从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位: g ) 如下:

甲:501    497   498    502    513   489   506   490   505   486

      502    503   498    497    491   500   505   502   504   505

乙:505   499   502    491    487   506   493   505   499   498

      502    503   501    490    501   502   511   499   499    501

[ 整理数据 ] 整理以上数据,得到每袋质量 x ( g ) 的频数分布表.

质量

频数

机器

485 x < 490

490 x < 495

495 x < 500

500 x < 505

505 x < 510

510 x < 515

2

2

4

7

4

1

1

3

5

7

3

1

[ 分析数据 ] 根据以上数据,得到以下统计量.

统计量

机器

平均数

中位数

方差

不合格率

499.7

501.5

42.01

b

499.7

a

31.81

10 %

根据以上信息,回答下列问题:

(1)表格中的 a =    b =   

(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学频数(率)分布表试题