初中数学

为庆祝中国共产党成立100周年,某中学组织全校学生参加党史知识竞赛,从中任取20名学生的竞赛成绩进行统计,绘制了不完整的统计图表:

组别

成绩范围

频数

A

60 ~ 70

2

B

70 ~ 80

m

C

80 ~ 90

9

D

90 ~ 100

n

(1)分别求 m n 的值;

(2)若把每组中各学生的成绩用这组数据的中间值代替(如 60 ~ 70 的中间值为 65 ) 估计全校学生的平均成绩;

(3)从 A 组和 D 组的学生中随机抽取2名学生,用树状图或列表法求这2名学生都在 D 组的概率.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).

某校某年级360名学生一分钟跳绳次数的频数表

组别(次     )

频数

100 ~ 130

48

130 ~ 160

96

160 ~ 190

a

190 ~ 220

72

(1)求 a 的值;

(2)把频数分布直方图补充完整;

(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

某校开展主题为"防疫常识知多少"的调查活动,抽取了部分学生进行调查,调查问卷设置了 A :非常了解、 B :比较了解、 C :基本了解、 D :不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:

等级

频数

频率

A

20

0.4

B

15

b

C

10

0.2

D

a

0.1

(1)频数分布表中 a =   , b =   ,将频数分布直方图补充完整;

(2)若该校有学生1000人,请根据抽样调查结果估算该校"非常了解"和"比较了解"防疫常识的学生共有多少人?

(3)在"非常了解"防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:

17

18

16

13

24

15

28

26

18

19

22

17

16

19

32

30

16

14

15

26

15

32

23

17

15

15

28

28

16

19

对这30个数据按组距3进行分组,并整理、描述和分析如下.

频数分布表

组别

销售额

13 x < 16

16 x < 19

19 x < 22

22 x < 25

25 x < 28

28 x < 31

31 x < 34

频数

7

9

3

a

2

b

2

数据分析表

平均数

众数

中位数

20.3

c

18

请根据以上信息解答下列问题:

(1)填空: a =    b =    c =   

(2)若将月销售额不低于25万元确定为销售目标,则有  位营业员获得奖励;

(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:

组别

锻炼时间(分 )

频数(人)

百分比

A

0 x 20

12

20 %

B

20 < x 40

a

35 %

C

40 < x 60

18

b

D

60 < x 80

6

10 %

E

80 < x 100

3

5 %

(1)本次调查的样本容量是   ;表中 a =    b =   

(2)将频数分布直方图补充完整;

(3)已知 E 组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是   

(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).

甲组杨梅树落果率频数分布表

落果率

组中值

频数(棵     )

0 x < 10 %

5 %

12

10 % x < 20 %

15 %

4

20 % x < 30 %

25 %

2

30 % x < 40 %

35 %

1

40 % x < 50 %

45 %

1

(1)甲、乙两组分别有几棵杨梅树的落果率低于 20 %

(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;

(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:

信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;

信息二:

信息三:

近一周家务劳动时间分布表

时间/小时

t 1

1 t 2

2 t 3

3 t 4

t 4

人数/人

5

8

12

7

3

信息四:

劳动能力量化成绩与近一周家务劳动总时间统计表

成绩/分

人数

时间/小时

6

7

8

9

10

t 1

4

1

0

0

0

1 t 2

0

6

1

1

0

2 t 3

0

0

9

3

0

3 t 4

0

1

1

3

2

t 4

0

0

0

1

2

根据以上信息,解决下列问题:

(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为  分;

(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)

①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:  

②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:  

③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在 2 t 3 的时间段:  

(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋 500 g ,与之相差大于 10 g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:

[ 收集数据 ] 从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位: g ) 如下:

甲:501    497   498    502    513   489   506   490   505   486

      502    503   498    497    491   500   505   502   504   505

乙:505   499   502    491    487   506   493   505   499   498

      502    503   501    490    501   502   511   499   499    501

[ 整理数据 ] 整理以上数据,得到每袋质量 x ( g ) 的频数分布表.

质量

频数

机器

485 x < 490

490 x < 495

495 x < 500

500 x < 505

505 x < 510

510 x < 515

2

2

4

7

4

1

1

3

5

7

3

1

[ 分析数据 ] 根据以上数据,得到以下统计量.

统计量

机器

平均数

中位数

方差

不合格率

499.7

501.5

42.01

b

499.7

a

31.81

10 %

根据以上信息,回答下列问题:

(1)表格中的 a =    b =   

(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:

质量     / kg

组中值

频数(只     )

0 . 9 x < 1 . 1

1.0

6

1 . 1 x < 1 . 3

1.2

9

1 . 3 x < 1 . 5

1.4

a

1 . 5 x < 1 . 7

1.6

15

1 . 7 x < 1 . 9

1.8

8

根据以上信息,解答下列问题:

(1)表中 a =    ,补全频数分布直方图;

(2)这批鸡中质量不小于 1 . 7 kg 的大约有多少只?

(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元 / kg 的价格售出这批鸡后,该村贫困户能否脱贫?

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.

(1)以下三种抽样调查方案:

方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;

方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;

方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.

其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是   (填写“方案一”、“方案二”或“方案三” )

(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表 ( 90 分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为 x 分)

样本容量

平均分

及格率

优秀率

最高分

最低分

100

83.59

95 %

40 %

100

52

分数段

50 x < 60

60 x < 70

70 x < 80

80 x < 90

90 x 100

频数

5

7

18

30

40

结合上述信息解答下列问题:

①样本数据的中位数所在分数段为   

②全校1565名学生,估计竞赛分数达到“优秀”的学生有   人.

来源:2021年云南省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:

数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位: min )

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理数据:按如下分段整理样本数据并补全表格:

课外阅读时间 x ( min )

0 x < 40

40 x < 80

80 x < 120

120 x < 160

等级

D

C

B

A

人数

3

  

8

  

分析数据:补全下列表格中的统计量:

平均数

中位数

众数

80

  

  

得出结论:

(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为  

(2)如果该校现有学生400人,估计等级为“ B ”的学生有多少名?

(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成两幅不完整的统计图表.

请你根据统计图表提供的信息,解答下列问题:

(1)本次被调查的家庭有  户,表中 m =   

(2)本次调查数据的中位数出现在  组.扇形统计图中, D 组所在扇形的圆心角是  度;

(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?

组别

家庭年文化教育消费金额 x (元 )

户数

A

x 5000

36

B

5000 < x 10000

m

C

10000 < x 15000

27

D

15000 < x 20000

15

E

x > 20000

30

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

某鞋店在一周内销售某款女鞋,尺码(单位: cm ) 数据收集如下:

24

23.5

21.5

23.5

24.5

23

22

23.5

23.5

23

22.5

23.5

23.5

22.5

24

24

22.5

25

23

23

23.5

23

22.5

23

23.5

23.5

23

24

22

22.5

绘制如图不完整的频数分布表及频数分布直方图:

尺码 / cm

划记

频数

21 . 5 x < 22 . 5

3

22 . 5 x < 23 . 5

  

  

23 . 5 x < 24 . 5

  

13

24 . 5 x < 25 . 5

  

2

(1)请补全频数分布表和频数分布直方图;

(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为  

(3)若店主下周对该款女鞋进货120双,尺码在 23 . 5 x < 25 . 5 范围的鞋应购进约多少双?

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日 16 : 20 ,全球接种“新冠”疫苗的比例为 18 . 29 % ;中国累计接种4.2亿剂,占全国人口的 29 . 32 % .以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:

甲医院

乙医院

年龄段

频数

频率

频数

频率

18 - 29 周岁

900

0.15

400

0.1

30 - 39 周岁

a

0.25

1000

0.25

40 - 49 周岁

2100

b

c

0.225

50 - 59 周岁

1200

0.2

1200

0.3

60周岁以上

300

0.05

500

0.125

(1)根据上面图表信息,回答下列问题:

①填空: a =    b =    c =   

②在甲、乙两医院当天接种疫苗的所有人员中, 40 - 49 周岁年龄段人数在扇形统计图中所占圆心角为   

(2)若 A B C 三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.

被抽样的学生视力情况频数表

组别

视力段

频数

A

5 . 1 x 5 . 3

25

B

4 . 8 x 5 . 0

115

C

4 . 4 x 4 . 7

m

D

4 . 0 x 4 . 3

52

(1)求组别 C 的频数 m 的值.

(2)求组别 A 的圆心角度数.

(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?

来源:2020年浙江省衢州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学频数(率)分布表试题