某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 |
频数 |
频率 |
|
8 |
0.16 |
|
12 |
|
|
■ |
0.5 |
|
3 |
0.06 |
|
|
|
合计 |
■ |
1 |
(1)写出 , , 的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.
某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
|
频数 |
频率 |
体育 |
40 |
0.4 |
科技 |
25 |
a |
艺术 |
b |
0.15 |
其它 |
20 |
0.2 |
请根据上图完成下面题目:
(1)总人数为 人, a= , b= .
(2)请你补全条形统计图.
(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
某家庭记录了未使用节水龙头20天的日用水量数据(单位: 和使用了节水龙头20天的日用水量数据,得到频数分布表如下:
未使用节水龙头20天的日用水量频数分布表:
日用水量 |
|
|
|
|
|
频数 |
0 |
4 |
2 |
4 |
10 |
使用了节水龙头20天的日用水量频数分布表:
日用水量 |
|
|
|
|
频数 |
2 |
6 |
8 |
4 |
(1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;
(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)
国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
获奖等次 |
频数 |
频率 |
一等奖 |
10 |
0.05 |
二等奖 |
20 |
0.10 |
三等奖 |
30 |
b |
优胜奖 |
a |
0.30 |
鼓励奖 |
80 |
0.40 |
请根据所给信息,解答下列问题:
(1)a= ,b= ,且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.
阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.
组别 |
时间(小时) |
频数(人数) |
频率 |
|
|
6 |
0.15 |
|
|
|
0.3 |
|
|
10 |
0.25 |
|
|
8 |
|
|
|
4 |
0.1 |
合计 |
1 |
请根据图表中的信息,解答下列问题:
(1)表中的 , ,中位数落在 组,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?
(3) 组的4人中,有1名男生和3名女生,该校计划在 组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.
秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:
分 数 段 |
频数 |
频率 |
60≤x<70 |
9 |
a |
70≤x<80 |
36 |
0.4 |
80≤x<90 |
27 |
b |
90≤x≤100 |
c |
0.2 |
请根据上述统计图表,解答下列问题:
(1)在表中,a= ,b= ,c= ;
(2)补全频数直方图;
(3)根据以上选取的数据,计算七年级学生的平均成绩.
(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?
某校开展了"禁毒"知识的宣传教育活动.为了解这次活动的效果,现随机抽取部分学生进行知识测试,并将所得数据绘制成不完整的统计图表.
等级 |
频数(人数) |
频率 |
优秀 |
60 |
0.6 |
良好 |
|
0.25 |
合格 |
10 |
|
基本合格 |
5 |
0.05 |
合计 |
|
1 |
根据统计图表提供的信息,解答下列问题:
(1) , , ;
(2)补全条形统计图;
(3)该学校共有1600名学生,估计测试成绩等级在合格以上(包括合格)的学生约有多少人?
(4)在这次测试中,九年级(3)班的甲、乙、丙、丁四位同学的成绩均为"优秀",现班主任准备从这四名同学中随机选取两名同学出一期"禁毒"知识的黑板报,请用列表法或画树状图法求甲、乙两名同学同时被选中的概率.
在恩施州2016年“书香校园,经典诵读”比赛活动中,有32万名学生参加比赛活动,其中有8万名学生分别获得一、二、三等奖,从获奖学生中随机抽取部分,绘制成如下不完整的统计图表,请根据图表解答下列问题.
获奖等级 |
频数 |
一等奖 |
100 |
二等奖 |
a |
三等奖 |
275 |
(1)表格中a的值为 .
(2)扇形统计图中表示获得一等奖的扇形的圆心角为 度.
(3)估计全州有多少名学生获得三等奖?
九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不完整的频数分布表和扇形统计图.
类别 |
频数(人数) |
频率 |
小说 |
16 |
|
戏剧 |
4 |
|
散文 |
|
|
其他 |
|
|
合计 |
1 |
根据图表提供的信息,解答下列问题:
(1)直接写出 , , 的值;
(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好是乙和丙的概率.
杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).
甲组杨梅树落果率频数分布表
落果率 |
组中值 |
频数(棵 |
|
|
12 |
|
|
4 |
|
|
2 |
|
|
1 |
|
|
1 |
(1)甲、乙两组分别有几棵杨梅树的落果率低于 ?
(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;
(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.
垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.
(1)以下三种抽样调查方案:
方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;
方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;
方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.
其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是 (填写“方案一”、“方案二”或“方案三” ;
(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表 分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为 分)
样本容量 |
平均分 |
及格率 |
优秀率 |
最高分 |
最低分 |
100 |
83.59 |
|
|
100 |
52 |
分数段 |
|
|
|
|
|
频数 |
5 |
7 |
18 |
30 |
40 |
结合上述信息解答下列问题:
①样本数据的中位数所在分数段为 ;
②全校1565名学生,估计竞赛分数达到“优秀”的学生有 人.
“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日 ,全球接种“新冠”疫苗的比例为 ;中国累计接种4.2亿剂,占全国人口的 .以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:
甲医院 |
乙医院 |
||||
年龄段 |
频数 |
频率 |
频数 |
频率 |
|
周岁 |
900 |
0.15 |
400 |
0.1 |
|
周岁 |
|
0.25 |
1000 |
0.25 |
|
周岁 |
2100 |
|
|
0.225 |
|
周岁 |
1200 |
0.2 |
1200 |
0.3 |
|
60周岁以上 |
300 |
0.05 |
500 |
0.125 |
|
(1)根据上面图表信息,回答下列问题:
①填空: , , ;
②在甲、乙两医院当天接种疫苗的所有人员中, 周岁年龄段人数在扇形统计图中所占圆心角为 ;
(2)若 、 、 三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.
某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:
组别 |
锻炼时间(分 |
频数(人) |
百分比 |
|
|
12 |
|
|
|
|
|
|
|
18 |
|
|
|
6 |
|
|
|
3 |
|
(1)本次调查的样本容量是 ;表中 , ;
(2)将频数分布直方图补充完整;
(3)已知 组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是 ;
(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?
某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).
某校七年级各班一周收集的可回收垃圾的质量的频数表
组别 |
频数 |
|
2 |
|
|
|
3 |
|
1 |
(1)求 的值;
(2)已知收集的可回收垃圾以0.8元 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?
随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项: .和同学亲友聊天; .学习; .购物; .游戏; .其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到图表(部分信息未给出)
选项 |
频数 |
频率 |
|
10 |
|
|
|
0.2 |
|
5 |
0.1 |
|
|
0.4 |
|
5 |
0.1 |
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中 , , 的值,并补全条形统计图.
(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.