为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(≈1.4)
如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD= 米(结果可保留根号)
在Rt△ABC中,∠C=90°,若AB=,BC=2,则sinB的值为( )
A. | B. | C. | D.2 |
如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.
(本小题满分10分)某车库出口处设置有“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的连接点,当车辆经过时,栏杆AEF升起后的位置如图1所示(图2为其几何图形)。其中AB⊥BC,DC⊥BC,EF∥BC,∠EAB=150°,AB=AE=1.2m,BC=2.4m.
(1)求图2中点E到地面的高度(即EH的长。,结果精确到0.01m,栏杆宽度忽略不计);
(2)若一辆厢式货车的宽度和高度均为2m,这辆车能否驶入该车库?请说明理由.
在△ABC中,∠C=90°,sinA=,则tanB=_________.
把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦值函数( )
A.不变 |
B.缩小为原来的 |
C.扩大为原来的3倍 |
D.不能确定 |
身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是( )
同学 |
甲 |
乙 |
丙 |
丁 |
放出风筝线长 |
140m |
100m |
95m |
90m |
线与地面夹角 |
30° |
45° |
45° |
60° |
A.甲 B.乙 C.丙 D.丁