四边形中,∥,,,.点为射线上动点(不与点、重合),点在直线上,且.记,,,.
(1)当点在线段上时,写出并证明与的数量关系;
(2)随着点的运动,(1)中得到的关于与的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的的取值范围;
(3)若cos=,试用的代数式表示.
如图,⊙的半径为6,线段与⊙相交于点、,,,与⊙相交于点,设,.
(1)求长;
(2)求关于 的函数解析式,并写出定义域;
(3)当 ⊥时,求 的长.
如图所示,在形状和大小不确定的△ABC中,BC=6,E、F分别是AB.AC的中点,P在EF或EF的延长线上,BP交CE于D,Q在CE上且BQ平分∠CBP,设BP=y,PE=x.
(1)当x=EF时,求S△DPE:S△DBC的值;
(2)当CQ=CE时,求y与x之间的函数关系式;
(3)①当CQ=CE时,求y与x之间的函数关系式;
②当CQ=CE(n为不小于2的常数)时,直接写出y与x之间的函数关系式.
如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求图象经过点A的反比例函数的解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式.
如图所示,,,,点是以为直径的半圆上一动点,交直线于点,设.
当时,求的长;
当时,求线段的长;
若要使点在线段的延长线上,则的取值范围是_______.(直接写出答案)
右图中,ABCD是梯形,面积是1。已知=,=,=。问:
(1) 三角形ECD的面积是多少?
(2) 四边形EHFG的面积是多少?
(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证:
(1)EP/DE=PD/DC;(2)△EPD是等腰三角形.