初中数学

如图,长方形ABCD中,AB=4,AD=3,E是边AB上一点(不与A、B重合),F是边BC上一点(不与B、C重合).若△DEF和△BEF是相似三角形,则CF=       

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(1)如图,已知折痕与边BC交于点E,连结AP、EP、EA.求证:△ECP∽△PDA;
(2)若△ECP与△PDA的面积比为1:4,求边AB的长;
(3)在(2)的条件下以点A为坐标原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,问在坐标平面内是否存在点M,使得以点A、B、E、M为顶点的四边形是平行四边形,若存在请直接写出点M的坐标;若不存在请说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题8分)如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.

(1)△ABC与△FOA相似吗?为什么?
(2)试判定四边形AFCE的形状,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形纸片ABDC中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕A E上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为__________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BDm·BP时,请直接写出PE与PF的数量关系.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知左右并排的两棵树高分别是AB=8m,CD=12m,两树的根部的距离BD=5m,小明眼睛离地面的高度EF为1.6m,他沿着正对这两棵树的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,边AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.

(1)直接写出 D,E 两点的坐标,D(         ),E(          
(2)求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?
(3)当t为何值时,DP平分∠EDA?
(4)当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使得两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:

①当x=1时,点P是正方形ABCD的中心;
②当x=时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的是________(填序号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有两个直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4,将这两个直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC=        度;
(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围(直接写出结果,不必写过程).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当时,
②当时, 
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.

(1)求AE:AC的值;(2)若AB=a,FB=EC,求AC的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.

(1)求AC的长和点D的坐标;
(2)说明△AEF与△DCE相似;
(3)当△EFC为等腰三角形时,求点E的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年新疆区、兵团12分)如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).

(1)写出A,B两点的坐标;
(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?
(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

问题情境:如图1,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC边交于P、Q两点。
问题探究:(1)在旋转过程中,
①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由。
②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由。
③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为_______________(直接写出结论,不必证明)
(2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由。

图1              图2                 图3

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题