如图,把一张矩形纸片 沿对角线 折叠,点 的对应点为 , 与 相交于点 ,则下列结论一定正确的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,将边长为6的正方形纸片 对折,使 与 重合,折痕为 ,展平后,再将点 折到边 上,使边 经过点 ,折痕为 ,点 的对应点为 ,点 的对应点为
(1)若 ,则 (用含 的代数式表示);
(2)求折痕 的长.
如图,将矩形纸片 沿 折叠,得到△ , 与 交于点 .若 ,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
(1)如图1,将矩形 折叠,使 落在对角线 上,折痕为 ,点 落在点 处,若 ,则 的度数为 .
(2)小明手中有一张矩形纸片 , , .
【画一画】
如图2,点 在这张矩形纸片的边 上,将纸片折叠,使 落在 所在直线上,折痕设为 (点 , 分别在边 , 上),利用直尺和圆规画出折痕 (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
【算一算】
如图3,点 在这张矩形纸片的边 上,将纸片折叠,使 落在射线 上,折痕为 ,点 , 分别落在点 , 处,若 ,求 的长;
【验一验】
如图4,点 在这张矩形纸片的边 上, ,将纸片折叠,使 落在 所在直线上,折痕为 ,点 , 分别落在点 , 处,小明认为 所在直线恰好经过点 ,他的判断是否正确,请说明理由.
如图,在 中, , ,点 、 分别在 、 上,且 ,将 沿 所在直线折叠得到△ (点 在四边形 内),连接 ,则 的长为 .
如图,在 中,点 在优弧 上,将弧 沿 折叠后刚好经过 的中点 .若 的半径为 , ,则 的长是
A. B. C. D.
如图, 中,点 为边 的中点,连接 ,将 沿直线 翻折至 所在平面内,得 ,连接 ,分别与边 交于点 ,与 交于点 .若 , ,则 的长为 .
如图,将长、宽分别为 , 的长方形纸片分别沿 , 折叠,点 , 恰好重合于点 .若 ,则折叠后的图案(阴影部分)面积为
A. |
|
B. |
|
C. |
|
D. |
|
将一张圆形纸片(圆心为点 沿直径 对折后,按图1分成六等份折叠得到图2,将图2沿虚线 剪开,再将 展开得到如图3的一个六角星.若 ,则 的度数为 .
如图,在 中, , , ,点 在线段 上,且 , 是线段 上的一点,连接 ,把四边形 沿直线 翻折,得到四边形 ,当点 恰好落在线段 上时, .
如图,在 中, , , .
(1)求 边上的高线长.
(2)点 为线段 的中点,点 在边 上,连结 ,沿 将 折叠得到 .
①如图2,当点 落在 上时,求 的度数.
②如图3,连结 ,当 时,求 的长.
把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则 的度数是
A. B. C. D.
如图,把正方形纸片 沿对边中点所在的直线对折后展开,折痕为 ,再过点 折叠纸片,使点 落在 上的点 处,折痕为 .若 的长为2,则 的长为
A.2B. C. D.1