初中数学

如图,正五边形 ABCDE 和正三角形 AMN 都是 O 的内接多边形,则 BOM =   

来源:2018年湖南省株洲市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图, AC O 的内接正六边形的一边,点 B AC ̂ 上,且 BC O 的内接正十边形的一边,若 AB O 的内接正 n 边形的一边,则 n =          

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图所示的正六边形 ABCDEF ,连接 FD ,则 FDC 的大小为  

来源:2017年湖南省邵阳市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图, FA GB HC ID JE 是五边形 ABCDE 的外接圆的切线,则 BAF + CBG + DCH + EDI + AEJ =    °

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形 ABCD ,则四边形 ABCD 的周长是  

来源:2017年广西玉林市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, ΔABC 是半径为2的圆内接正三角形,则图中阴影部分的面积是  (结果用含 π 的式子表示).

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,正六边形 ABCDEF 的边长是 6 + 4 3 ,点 O 1 O 2 分别是 ΔABF ΔCDE 的内心,则 O 1 O 2 =   

来源:2018年广西玉林市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,有一个边长不定的正方形 ABCD ,它的两个相对的顶点 A C 分别在边长为1的正六边形一组平行的对边上,另外两个顶点 B D 在正六边形内部(包括边界),则正方形边长 a 的取值范围是  

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,正五边形 ABCDE 内接于 O ,点 F CD ̂ 上,则 BFE 的度数为  

来源:2016年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BC = 3 2 AC = 5 B = 45 ° ,则下面结论正确的是  

C 一定是钝角;

ΔABC 的外接圆半径为3;

sin A = 3 5

ΔABC 外接圆的外切正六边形的边长是 5 6 3

来源:2016年四川省德阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,将边长为3的正六边形铁丝框 ABCDEF 变形为以点 A 为圆心, AB 为半径的扇形(忽略铁丝的粗细).则所得扇形 AFB (阴影部分)的面积为  

来源:2016年四川省巴中市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

如图,在拧开一个边长为 a 的正六角形螺帽时,扳手张开的开口 b = 20 mm ,则边长 a =    mm

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆 O 的半径为1,若用圆 O 的外切正六边形的面积 S 来近似估计圆 O 的面积,则 S =   .(结果保留根号)

来源:2018年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 内接于 O ,其边长为4,则 O 的内接正三角形 EFG 的边长为        

来源:2016年山东省威海市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为  

来源:2016年湖南省株洲市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

初中数学正多边形和圆填空题