据《汉书律历志》记载:“量者,龠yuè、合、升、斗、斛hú也”斛是中国古代的一种量器,“斛底,方而圜huán其外,旁有庣tiāo焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.
问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为 尺.(结果用最简根式表示)
观察下列结论:
(1)如图①,在正三角形中,点,是,上的点,且,则,;
(2)如图2,在正方形中,点,是,上的点,且,则,;
(3)如图③,在正五边形中点,是,上的点,且,则,;
根据以上规律,在正边形中,对相邻的三边实施同样的操作过程,即点,是,上的点,且,与相交于.也会有类似的结论,你的结论是 .
如图,边长为 的正六边形螺帽,中心为点 , 垂直平分边 ,垂足为 , ,用扳手拧动螺帽旋转 ,则点 在该过程中所经过的路径长为 .
刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积来近似估计的面积,设的半径为1,则 .
如图, 是 的内接正六边形的一边,点 在 上,且 是 的内接正十边形的一边,若 是 的内接正 边形的一边,则 .
如图,正六边形 的边长为1,以点 为圆心, 的长为半径,作扇形 ,则图中阴影部分的面积为 (结果保留根号和 .
刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆 的半径为1,若用圆 的外切正六边形的面积 来近似估计圆 的面积,则 .(结果保留根号)