初中数学

将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为        时,四边ABC1D1为矩形;当点B的移动距离为          时,四边形ABC1D1为菱形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连接EF交线段BD于点G,交AO于点H.若AB=3,AG=,则线段EH的长为   

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为         cm.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,菱形ABCD和菱形ECGF的边长分别为2和4, ∠A=120°.则阴影部分面积是       .(结果保留根号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

四边形ABCD∽四边形,他们的面积之比为36∶25,若四边形的周长为15cm,则四边形ABCD的周长为        cm。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

七巧板被西方人称为“东方魔板”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形(如图a)的边长为8,则“一帆风顺”(如图b)阴影部分的面积为_______.

图a             图b

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,AB=4a,E是BC的中点,BE=2a,∠BAD=120°,P是BD上的动点,则PE+PC的最小值为              .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C落在ME上,点C的对应点为H,折痕为MG;③翻折纸片,使B落在ME上,点B的对应点恰与H重合,折痕为GE.

根据上述过程,长方形纸片的长宽之比=             

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是     

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为     

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是     ;四边形A2013B2013C2013D2013的周长是     

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

请同学们认真阅读、研究,完成“类比猜想”及后面的问题.
习题解答:
习题如图13(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.
解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°﹣45°=45°=∠EAF,
又∵AE′=AE,AF=AF
∴△AE′F≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
习题研究
观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=∠BAD.
类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?
研究一个问题,常从特例入手,请同学们研究:如图13(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?
(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?
归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:       

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=4,BC=3,边CD在直线L上,将矩形ABCD沿直线L作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为       .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,□ABCD中,E是AB中点,F在AD上,且AF=FD,EF交AC于G,则AG︰AC=______.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质填空题