初中数学

(Ⅰ)某服装厂承揽一项生产夏凉小衫1600件的任务,计划用 t 天完成.
(1)写出每天生产夏凉小衫 w (件)与生产时间 t (天)( t > 4 )之间的函数关系式;
(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?
(Ⅱ)如图,已知矩形 A B C D 中, E A D 上的一点, F A B 上的一点, E F E C ,且 E F = E C D E = 4 c m ,矩形 A B C D 的周长为32cm,求 A E 的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在▱ABCD中,E,F分别是BC,AD中点.
(1)求证:△ABE≌△CDF;
(2)当BC=2AB=4,且△ABE的面积为,求证:四边形AECF是菱形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:平行四边形ABCD中,过对角线AC中点O的直线EF交AD于F,BC于E。
求证:BE=DF

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个  三角形
(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,E、F是四边形ABCD的对角线AC上的两点,AE=CF,BE=DF,BE∥DF.求证:四边形A BCD是平行四边形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知四边形ABCD是平行四边形.
(1)求证:△MEF∽△MBA;
(2)若AF、BE分别是∠DAB,∠CBA的平分线,求证:DF=EC.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.
(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,E是AB边上任意一点,BG⊥CE,垂足为点O,交AC于点F,交AD于点G。
(1)证明:BE="AG" ;
(2)点E位于什么位置时,∠AEF=∠CEB,说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AD∥BC,BC=2AD,点F、G分别是边BC、CD的中点,连接AF、FG,过点D作DE∥FG交AF于点E。
(1)求证:△AED≌△CGF;
(2)若梯形ABCD为直角梯形,∠B=90°,判断四边形DEFG是什么特殊四边形?并证明你的结论;
(3)若梯形ABCD的面积为a(平方单位),则四边形DEFG的面积为      (平方单位)。(只写结果,不必说理)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·曲靖)如图,在梯形ABCD中,AD∥BC,E、F分别是两腰AB、
DC的中点,AF、BC的延长线交于点G.

(1) 求证:△ADF≌△GCF.
(2) 类比三角形中位线的定义,我们把EF叫做梯形ABCD的中位线.阅读填空:
在△ABG中:∵E中AB的中点
由(1)的结论可知F是AG的中点,
∴EF是△ABG的_______线

因此,可将梯形中位线EF与两底AD,BC的数量关系用文字语言表述为______________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·兵团维吾尔)如图,在等腰梯形ABCD中,AD=4,BC=9,∠
B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD
向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AB的长;
(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;
(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·兵团维吾尔)请判断下列命题是否正确?如果正确,请给出证明;
如果不正确,请举出反例.
(1)一组对边平行且相等的四边形是平行四边形;
(2)一组对角相等,一条对角线被另一条对角线平分的四边形是平行四边形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知△ABC和△DEF是两个边长都为10cm的等边三角形,且B、D、C、E都在同一条直线上,连接AD、CF.

(1)求证:四边形ADFC是平行四边形;
(2)若BD=3cm,△ABC沿着BE的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒,
①当t为何值时,平行四边形ADFC是菱形?请说明理由;
②平行四边形ADFC有可能是矩形吗?若可能,求出t的值;若不可能,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知点D在△ABC的BC边上,DE//AC交AB于E,DF//AB交AC于F.

(1)求证:AE=DF;
(2)若添加条件_______,则四边形AEDF是矩形;
若添加条件_______,则四边形AEDF是菱形;
若添加条件_______,则四边形AEDF是正方形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题