如图,在梯形ABCD中,AD∥BC,BC=2AD,点F、G分别是边BC、CD的中点,连接AF、FG,过点D作DE∥FG交AF于点E。(1)求证:△AED≌△CGF;(2)若梯形ABCD为直角梯形,∠B=90°,判断四边形DEFG是什么特殊四边形?并证明你的结论;(3)若梯形ABCD的面积为a(平方单位),则四边形DEFG的面积为 (平方单位)。(只写结果,不必说理)
有两个全等的等腰直角三角板ABC和EFG其直角边长均为6(如图1所示)叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角满足0<º<90º,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2). (1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论. (2)如图,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.
根据要求,解答下列问题:(1)已知直线l1的函数表达式为,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线垂直的直线l6的函数表达式。
如图,对称轴为的抛物线与轴相交于点、。(1)求抛物线的解析式,并求出顶点的坐标(2)连结AB,把AB所在的直线平移,使它经过原点O,得到直线.点P是上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为,当0<S≤18时,求的取值范围(3)在(2)的条件下,当取最大值时,抛物线上是否存在点,使△OP为直角三角形且OP为直角边.若存在,直接写出点的坐标;若不存在,说明理由.
已知,大正方形的边长为4,小正方形的边长为2,状态如图所示.大正方形固定不动,把小正方形以的速度向大正方形的内部沿直线平移,设平移的时间为秒,两个正方形重叠部分的面积为,完成下列问题:(1)用含的式子表示,要求画出相应的图形,表明的范围;(2)当,求重叠部分的面积;(3)当,求的值.
如图①,在平面直角坐标系中,已知点A(2,0),点B(0,4),点E(0,1),如图②,将△AEO沿x轴向左平移得到△A′E′O′,连接A′B、BE′。(1)设AA′=m(m >0),试用含m的式子表示,并求出使取得最小值时点E′的坐标;(2)当A′B+BE′取得最小值时,求点E′的坐标。