(本小题满分12分) 设向量,其中.(1)求的取值范围;(2)若函数的大小
(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令表示走出迷宫所需的时间.(1)求的分布列;(2)求的数学期望.
(本小题满分12分)已知函数.(1)当时,求在区间上的取值范围;(2)当时,,求的值.
已知集合 S n = { X | X = ( x 1 , x 2 , … , x n ) , x i ∈ 0 , 1 , i = 1 , 2 , . . . , n } , ( n ≥ 2 ) 对于 A = ( a 1 , a 2 , … a n , ) , B = ( b 1 , b 2 , … b n , ) ∈ S n ,定义 A 与 B 的差为 A - B = ( | a 1 - b 1 | , | a 2 - b 2 | , … | a n - b n | ) ;
A 与 B 之间的距离为 d ( A , B ) = ∑ i = j n a i - b i
(Ⅰ)证明: ∀ A , B , C ∈ S n ,有 A - B ∈ S n ,且 d ( A - C , B - C ) = d ( A , B ) ;
(Ⅱ)证明: ∀ A , B , C ∈ S n , d ( A , B ) , d ( A , C ) , d ( B , C ) 三个数中至少有一个是偶数
(Ⅲ)设 P ⊆ S n ,中有 m ( m ≥ 2 ) 个元素,记 P 中所有两元素间距离的平均值为 d ¯ ( P ) .证明: d ¯ ( P ) ≤ m n 2 ( m - 1 ) .
在平面直角坐标系 x O y 中,点 B 与点 A ( - 1 , 1 ) 关于原点 O 对称, P 是动点,且直线 A P 与 B P 的斜率之积等于 - 1 3 . (Ⅰ)求动点 P 的轨迹方程; (Ⅱ)设直线 A P 和 B P 分别与直线 x = 3 交于点 M , N ,问:是否存在点 P 使得 △ P A B 与 △ P M N 的面积相等?若存在,求出点 P 的坐标;若不存在,说明理由.
已知函数 f x = ln 1 + x - x + x 2 x 2 k ⩾ 0 . (Ⅰ)当 k = 2 时,求曲线 y = f x 在点 1 , f 1 处的切线方程; (Ⅱ)求 f x 的单调区间.