在平面直角坐标系 x O y 中,点 B 与点 A ( - 1 , 1 ) 关于原点 O 对称, P 是动点,且直线 A P 与 B P 的斜率之积等于 - 1 3 . (Ⅰ)求动点 P 的轨迹方程; (Ⅱ)设直线 A P 和 B P 分别与直线 x = 3 交于点 M , N ,问:是否存在点 P 使得 △ P A B 与 △ P M N 的面积相等?若存在,求出点 P 的坐标;若不存在,说明理由.
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知函数,当时,取得极大值;当时,取得极小值.求、、的值;求在处的切线方程.
已知函数.(1)求函数的单调区间;(2)求函数在区间[0,3]上的最大值与最小值
已知曲线与在处的切线互相垂直,求的值.
已知函数.求函数的最小正周期;求函数的最值及取到最小值的的集合.