初中数学

矩形ABCD中,边长AB=4,边BC=2,M、N分别是边BC、CD上的两个动点,且始终保持AM⊥MN.则CN的最大为( )

A.1           B.       C.      D.2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线EF向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程长为( )

A.12           B.9             C.4          D.6 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn
①四边形A4B4C4D4是菱形;
②四边形A3B3C3D3是矩形;
③四边形A7B7C7D7周长为
④四边形AnBnCnDn面积为
上述结论正确的是(     )

A.①②③ B.②③④ C.①③④ D.①②③④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是 (    )

A.20             B.18             C.16             D.10

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是(   )

A.①②③ B.①②④ C.①③④ D.②③④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离相等且为1,如果四边形ABCD的四个顶点在平行直线上,∠BAD=90°且AB=3AD,DC⊥l4,则四边形ABCD的面积是(   )

A.9 B.14 C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于( )

A.14         B.16           C.18        D.20

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知在正方形ABCD中,点O为对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下面结论中:①图形中全等的三角形只有三对;②△EOF是等腰直角三角形;③正方形ABCD的面积等于四边形OEBF面积的4倍;④BE+BF=OA;⑤+
=2OP·OB.正确结论的个数是(    )

A.4个      B.3个        C.2个       D.1个

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落在双曲线上,则m的值是                      (   )

A.2 B.3 C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3,EF=4,则边AD的长是()

A.2 B.3 C.4.8 D.5
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为(  )

A.(60°,4) B.(45°,4) C.(60°, D.(50°,
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,E是边长为l的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值为(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

下列图形都是由同样大小的矩形按一定规律组成,其中第(1)个图形的面积为2,第(2)个图形的面积为8,第(3)个图形的面积为18,……,则第(10)个图形的面积为(    )

A.196 B.200 C.216 D.256
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是(  )

A.S1>S2+S3      B.△AOM∽△DMN      C.∠MBN=45°      D.MN=AM+CN

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质选择题