初中数学

如图,矩形纸片ABDC中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕A E上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为__________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=   

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知梯形ABCD中,AD∥BC,AB=15,CD=13,AD=8,∠B是锐角,∠B的正弦值为,那么BC的长为       

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.

①求证:AD=CN;
②若∠BAN=90度,求证:四边形ADCN是矩形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,则五边形ABCDE的面积等于 _________ .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

△ABC中,AB=AC=5,BC=6,点D是BC上的一点,那么点D到AB与AC的距离的和为(  )

A.5 B.6 C.4 D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的上时,的长度等于(    ).

A.    B.     C.  D.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,点是菱形的对角线上一点,连接并延长,交,交的延长线于点

(1)图中△与哪个三角形全等?并说明理由.
(2)求证:△∽△.
(3)猜想:线段之间存在什么关系?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图所示的一张矩形纸片,将纸片折叠一次,使点重合,再展开,折痕边于,交边于,分别连接

(1)求证:四边形是菱形.
(2)若,△的面积为,求△的周长.
(3)在线段上是否存在一点,使得?若存在,请说明点的位置,并予以证明;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四边形为一梯形纸片,.翻折纸片,使点与点重合,折痕为.已知,试说明:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.

(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.
已知:在四边形ABCD中,O是对角线BD上任意一点(如图①);
求证:.
证明:
(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明;若不能,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是_____

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF.

(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)
(2)若矩形ABCD的周长为20,四边形AEDF的面积是否存在最大值?如果存在,请求出最大值;如果不存在,请说明理由.
(3)若AB=,BC=,当.满足什么条件时,四边形AEDF能成为一个矩形?(不必说明理由)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,梯形ABCD中,AD//BC,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积是       .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.

(1)求证:四边形AODE是菱形;
(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE的形状是什么?说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆试题