初中数学

如图,在边长为10的菱形ABCD中,对角线BD ="16." 点E是AB的中点,P、Q是BD上的动点,且始终保持PQ ="2." 则四边形AEPQ周长的最小值为_________.(结果保留根号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①,在□ABCD中,AB=13,BC=50,点P从点B出发,沿B—A—D—A运动.已知沿B—A运动时的速度为每秒13个单位长度,沿A—D—A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度. 若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.

(1)当点P沿A—D—A运动时,求AP的长(用含t的代数式表示).
(2)过点Q作QR//AB,交AD于点R,连结BR,如图②.在点P沿B—A—D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况,若存在,求出所有t的值,若不存在,请说明理由.
(3)设点C.D关于直线PQ的对称点分别为,在点P沿B—A—D运动过程中, 当//BC时,求t的值(直接写出结果).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

14分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF

(1)如图1,当点D在线段BC上时.求证CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC 求OC的长度.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;
(3)在(2)小题的条件下, AC与BG的交点为M, 当AB=4,AD= 时,求线段CM的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形ABCD中,点E在边AB上,且BE=,AE=3BE,点P在线段AC上的运动,则PE+PB的最小值为             

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

请同学们认真阅读、研究,完成“类比猜想”及后面的问题.
习题解答:
习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.

解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°﹣45°=45°=∠EAF,
又∵AE′=AE,AF=AF
∴△AE′F≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
习题研究
观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=∠BAD.
类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?
研究一个问题,常从特例入手,请同学们研究:如图13(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?
(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?
归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:       

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.

(1)求证:AE⊥BF;
(2)将沿对折,得到(如图2),延长的延长线于点,求的值;
(3)将绕点逆时针方向旋转,使边正好落在上,得到(如图3),若相交于点,当正方形的面积为4时,求四边形的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直线与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于C.

(1)求直线BC的解析式;
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿C-B-A向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;
(3)在(2)的条件下,当t=4秒时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上的一动点,连接EM并延长交CD的延长线于点F,G是线段BC上的一点,连接GE 、GF、GM .若△EGF是等腰直角三角形,=90°,则AB=      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,现有边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.

(1)求证:∠APB=∠BPH;
(2)求证:AP+HC=PH;
(3)当AP=1时,求PH的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF

(1)如图1,当点D在线段BC上时.求证CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.

(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.

(1)求证:△AMB≌△ENB;
(2)①当M点在__________时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为时,求正方形的边长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落在双曲线上,则m的值是                      (   )

A.2 B.3 C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆试题