如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在__________时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.
在Rt△ABC中,,求、与.
四边形ABCD各顶点的坐标分别为A(1,3)、B(5,2)、C(8,4)、D(6,9),以原点为位似中心,相似比为的位似图形A1B1C1D1,且四边形A1B1C1D1在第一象限。写出各点坐标。
先化简,再求值:其中,
计算:
和是绕点旋转的两个相似三角形,其中与、与为对应角. (1)如图1,若和分别是以与为顶角的等腰直角三角形,且两三角形旋转到使点、、在同一条直线上的位置时,请直接写出线段与线段的关系; (2)若和为含有角的直角三角形,且两个三角形旋转到如图2的位置时,试确定线段与线段的关系,并说明理由; (3)若和为如图3的两个三角形,且=,,在绕点旋转的过程中,直线与夹角的度数是否改变?若不改变,直接用含、的式子表示夹角的度数;若改变,请说明理由.