如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.
将大小不同的两个正方形按如图所示那样拼接起来,连结BD、BF、DF,已知正方形ABCD的边长为,正方形CEFG的边长为,且<. (1)填空:BE×DG = (用含、的代数式表示); (2)当正方形ABCD的边长保持不变,而正方形CEFG的边长不断增大时,△BDF的面积会发生改变吗?请说明理由.
如图所示,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求: (1)到公园两个出入口A、C的距离相等; (2)到公园两边围墙AB、AD的距离相等. 请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)
已知,求下列各式的值. (1); (2).
先化简,再求值:,其中.
如图,在直角坐标系中,已知、、、,点P从C点出发,沿着折线C﹣D﹣A运动到达点A时停止,过C点作直线GC⊥PC,且与过O、P、C三点的⊙M交于点G,连接OP、PG、OD. (1)直接写出∠DCO的度数; (2)当点P在线段CD上运动时,求△OPG的最小面积; (3)设圆心M的纵坐标为n,试探索:在点P运动的整个过程中,n的取值范围.