如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.
解方程:-1=
计算:(-)-2-(-1)0+丨-2丨+
如图,已知∠1+∠2=180°,∠3=∠B.试说明:∠AED=∠C.
如果+(2x-y-5)2=0 求:(1)x-y的值;(2)求2x+3y的平方根.
在平面直角坐标系中有三点A(-3,3),B(-6,2),C(-2,0),P(a,b)是△ABC内一点,△ABC经平移后得到△A1B1C1,点P的对应点P1(a+6,b+2). (1)画出平移后的A1B1C1; (2)写出点A1,B1,C1的坐标; (3)求△ABC的面积.