初中数学

如图①,是矩形的对角线,.将沿射线方向平移到△的位置,使中点,连接,如图②.

(1)求证:四边形是菱形;

(2)四边形的周长为  

(3)将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.

来源:2017年吉林省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

【再现】如图①,在中,点分别是的中点,可以得到:,且.(不需要证明)

【探究】如图②,在四边形中,点分别是的中点,判断四边形的形状,并加以证明.

【应用】在(1)【探究】的条件下,四边形中,满足什么条件时,四边形是菱形?你添加的条件是:  .(只添加一个条件)

(2)如图③,在四边形中,点分别是的中点,对角线相交于点.若,四边形面积为5,则阴影部分图形的面积和为  

来源:2017年吉林省长春市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

感知:如图1,平分,易知:

探究:如图2,平分,求证:

应用:如图3,四边形中,,则  (用含的代数式表示)

来源:2016年吉林省长春市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

平面内,如图,在中,,点边上任意点,连接,将绕点逆时针旋转得到线段

(1)当时,求的大小;

(2)当时,求点与点间的距离(结果保留根号);

(3)若点恰好落在的边所在的直线上,直接写出旋转到所扫过的面积.(结果保留

来源:2017年河北省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q.记△AEF的面积为,四边形EFQP的面积为,四边形PQCB的面积为

(1)求证:EF+PQ=BC
(2)若=,求的值
(3)若=,直接写出的值

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年新疆、生产建设兵团)如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.
(1)如图①,求证:∠AFD=∠EBC;
(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;
(3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学四边形综合题解答题