初中数学

如图,在矩形纸片 ABCD 中, AB = 3 ,点 E 在边 BC 上,将 ΔABE 沿直线 AE 折叠,点 B 恰好落在对角线 AC 上的点 F 处,若 EAC = ECA ,则 AC 的长是 (    )

A. 3 3 B.4C.5D.6

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E DC 上,将矩形沿 AE 折叠,使点 D 落在 BC 边上的点 F 处.若 AB = 3 BC = 5 ,则 tan DAE 的值为 (    )

A. 1 2 B. 9 20 C. 2 5 D. 1 3

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的四个顶点分别在直线 l 3 l 4 l 2 l 1 上.若直线 l 1 / / l 2 / / l 3 / / l 4 且间距相等, AB = 4 BC = 3 ,则 tan α 的值为 (    )

A. 3 8 B. 3 4 C. 5 2 D. 15 15

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AC BD 相交于点 O ,过点 B BF AC CD 于点 F ,交 AC 于点 M ,过点 D DE / / BF AB 于点 E ,交 AC 于点 N ,连接 FN EM .则下列结论:

DN = BM

EM / / FN

AE = FC

④当 AO = AD 时,四边形 DEBF 是菱形.

其中,正确结论的个数是 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展平后再次折叠,使点 A 落在 EF 上的点 A ' 处,得到折痕 BM BM EF 相交于点 N .若直线 BA ' 交直线 CD 于点 O BC = 5 EN = 1 ,则 OD 的长为 (    )

A. 1 2 3 B. 1 3 3 C. 1 4 3 D. 1 5 3

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

把一张宽为 1 cm 的长方形纸片 ABCD 折叠成如图所示的阴影图案,顶点 A D 互相重合,中间空白部分是以 E 为直角顶点,腰长为 2 cm 的等腰直角三角形,则纸片的长 AD (单位: cm ) (    )

A. 7 + 3 2 B. 7 + 4 2 C. 8 + 3 2 D. 8 + 4 2

来源:2020年浙江省台州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 O 为矩形 ABCD 的对称中心,点 E 从点 A 出发沿 AB 向点 B 运动,移动到点 B 停止,延长 EO CD 于点 F ,则四边形 AECF 形状的变化依次为 (    )

A.平行四边形 正方形 平行四边形 矩形

B.平行四边形 菱形 平行四边形 矩形

C.平行四边形 正方形 菱形 矩形

D.平行四边形 菱形 正方形 矩形

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是 (    )

A.1和1B.1和2C.2和1D.2和2

来源:2020年浙江省湖州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 6 BC = 10 ,点 E F AD 边上, BF CE 交于点 G ,若 EF = 1 2 AD ,则图中阴影部分的面积为 (    )

A.25B.30C.35D.40

来源:2020年海南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的对角线 AC 的中点与坐标原点重合,点 E x 轴上一点,连接 AE .若 AD 平分 OAE ,反比例函数 y = k x ( k > 0 , x > 0 ) 的图象经过 AE 上的两点 A F ,且 AF = EF ΔABE 的面积为18,则 k 的值为 (    )

A.6B.12C.18D.24

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知点 E 是矩形 ABCD 的对角线 AC 上的一动点,正方形 EFGH 的顶点 G H 都在边 AD 上,若 AB = 3 BC = 4 ,则 tan AFE 的值 (    )

A.等于 3 7 B.等于 3 3

C.等于 3 4 D.随点 E 位置的变化而变化

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 4 AD = 2 E 为边 AD 上一个动点,连接 BE ,取 BE 的中点 G ,点 G 绕点 E 逆时针旋转 90 ° 得到点 F ,连接 CF ,则 ΔCEF 面积的最小值是 (    )

A.4B. 15 4 C.3D. 11 4

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AB 的中点,将 ΔBCE 沿 CE 翻折,点 B 落在点 F 处, tan DCE = 4 3 .设 AB = x ΔABF 的面积为 y ,则 y x 的函数图象大致为 (    )

A.B.

C.D.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,将矩形 ABCD 沿 GH 折叠,点 C 落在点 Q 处,点 D 落在 AB 边上的点 E 处,若 AGE = 32 ° ,则 GHC 等于 (    )

A. 112 ° B. 110 ° C. 108 ° D. 106 °

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知点 P 是矩形 ABCD 内一点(不含边界),设 PAD = θ 1 PBA = θ 2 PCB = θ 3 PDC = θ 4 ,若 APB = 80 ° CPD = 50 ° ,则 (    )

A. ( θ 1 + θ 4 ) ( θ 2 + θ 3 ) = 30 ° B. ( θ 2 + θ 4 ) ( θ 1 + θ 3 ) = 40 °

C. ( θ 1 + θ 2 ) ( θ 3 + θ 4 ) = 70 ° D. ( θ 1 + θ 2 ) + ( θ 3 + θ 4 ) = 180 °

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学矩形的性质选择题