如图,菱形 的对角线 , 相交于点 , , ,则菱形 的周长为
A.52B.48C.40D.20
图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点 , , , , 均在格点上,请仅用无刻度直尺在网格中完成下列画图.
(1)在图①中,画出 的平分线 ;
(2)在图②中,画一个 ,使点 在格点上.
如图,在平面直角坐标系 中,菱形 的边长为2,点 在第一象限,点 在 轴正半轴上, ,若将菱形 绕点 顺时针旋转 ,得到四边形 ,则点 的对应点 的坐标为 .
菱形不具备的性质是
A.四条边都相等B.对角线一定相等
C.是轴对称图形D.是中心对称图形
如图,在平面直角坐标系 中,函数 的图象经过菱形 的顶点 和边 的中点 ,若菱形 的边长为3,则 的值为 .
已知关于 的方程
(1)求证:无论 为何值,原方程都有实数根;
(2)若该方程的两实数根 、 为一菱形的两条对角线之长,且 ,求 值及该菱形的面积.
如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.
(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形, 经过点 ,连接 交 于点 ,观察发现:点 是 的中点.
下面是两位学生有代表性的证明思路:
思路1:不需作辅助线,直接证三角形全等;
思路2:不证三角形全等,连接 交 于点 .
请参考上面的思路,证明点 是 的中点(只需用一种方法证明);
(2)如图2,在(1)的前提下,当 时,延长 、 交于点 ,求 的值;
(3)在(2)的条件下,若 为大于 的常数),直接用含 的代数式表示 的值.
如图,菱形 的顶点 、 在 轴上 在 的左侧),顶点 、 在 轴上方,对角线 的长是 ,点 为 的中点,点 在菱形 的边上运动.当点 到 所在直线的距离取得最大值时,点 恰好落在 的中点处,则菱形 的边长等于
A. B. C. D.3
如图,在菱形 中, , , 是对角线 的中点,过点 作 于点 ,连结 .则四边形 的周长为
A. B. C. D.8
下列结论中,矩形具有而菱形不一定具有的性质是
A.内角和为 B.对角线互相平分
C.对角线相等D.对角线互相垂直
如图,菱形 中,对角线 , 相交于点 , 为 的中点.若菱形 的周长为32,则 的长为
A.3B.4C.5D.6
如图,在平面直角坐标系 中,菱形 的顶点 与原点 重合,顶点 落在 轴的正半轴上,对角线 、 交于点 ,点 、 恰好都在反比例函数 的图象上,则 的值为
A. B. C.2D.