如图①,在 Rt Δ ABC 中, ∠ ACB = 90 ° , ∠ A = 60 ° , CD 是斜边 AB 上的中线,点 E 为射线 BC 上一点,将 ΔBDE 沿 DE 折叠,点 B 的对应点为点 F .
(1)若 AB = a .直接写出 CD 的长(用含 a 的代数式表示);
(2)若 DF ⊥ BC ,垂足为 G ,点 F 与点 D 在直线 CE 的异侧,连接 CF ,如②,判断四边形 ADFC 的形状,并说明理由;
(3)若 DF ⊥ AB ,直接写出 ∠ BDE 的度数.
如图,矩形 ABCD 中,点 E 为 BC 上一点, F 为 DE 的中点,且 ∠ BFC = 90 ° .
(1)当 E 为 BC 中点时,求证: ΔBCF ≅ ΔDEC ;
(2)当 BE = 2 EC 时,求 CD BC 的值;
(3)设 CE = 1 , BE = n ,作点 C 关于 DE 的对称点 C ' ,连接 FC ' , AF ,若点 C ' 到 AF 的距离是 2 10 5 ,求 n 的值.