初中数学

如图, MAN = 63 ° ,进行如下操作:以射线 AM 上一点 B 为圆心,以线段 BA 长为半径作弧,交射线 AN 于点 C ,连接 BC ,则 BCN 的度数是 (    )

A. 54 ° B. 63 ° C. 117 ° D. 126 °

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,点 C 是圆上异于 A B 的一点,连结 BC 并延长至点 D ,使 CD = BC ,连结 AD O 于点 E ,连结 BE

(1)求证: ΔABD 是等腰三角形;

(2)连结 OC 并延长,与以 B 为切点的切线交于点 F ,若 AB = 4 CF = 1 ,求 DE 的长.

来源:2020年四川省宜宾市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 边长为3,连接 AC AE 平分 CAD ,交 BC 的延长线于点 E FA AE ,交 CB 延长线于点 F ,则 EF 的长为  

来源:2016年辽宁省丹东市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BF 平分 ABC ,交 AD 于点 F CE 平分 BCD ,交 AD 于点 E AB = 6 EF = 2 ,则 BC 长为 (    )

A.8B.10C.12D.14

来源:2016年辽宁省丹东市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 的外侧,作等边 ΔADE ,则 BED 的度数是      

来源:2017年湖北省黄冈市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

ABCD 中, DAB 的平分线交直线 CD 于点 E ,且 DE = 5 CE = 3 ,则 ABCD 的周长为  

来源:2017年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,在等腰三角形 ABC 中, AB = AC = 4 BC = 7 .如图2,在底边 BC 上取一点 D ,连接 AD ,使得 DAC = ACD .如图3,将 ΔACD 沿着 AD 所在直线折叠,使得点 C 落在点 E 处,连接 BE ,得到四边形 ABED ,则 BE 的长是 (    )

A.4B. 17 4 C. 3 2 D. 2 5

来源:2016年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC AD 平分 BAC BC 于点 D BC 的中点为 M ME / / AD ,交 BA 的延长线于点 E ,交 AC 于点 F

(1)求证: AE = AF

(2)求证: BE = 1 2 ( AB + AC )

来源:2016年山东省淄博市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别在 AB AC 上, BD = CE BE CD 相交于点 O

(1)求证: ΔDBC ΔECB

(2)求证: OB = OC

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

(1)计算: ( - 1 ) 2 - ( π - 2021 ) 0 + | - 1 2 |

(2)如图,在 ΔABC 中, A = 40 ° ABC = 80 ° BE 平分 ABC AC 于点 E ED AB 于点 D ,求证: AD = BD

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ACB ECD 恰好为对顶角, ABC = CDE = 90 ° ,连接 BD AB = BD ,点 F 是线段 CE 上一点.

探究发现:

(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD DF .你认为此结论是否成立?    .(填"是"或"否" )

拓展延伸:

(2)将(1)中的条件与结论互换,即: BD DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

问题解决:

(3)若 AB = 6 CE = 9 ,求 AD 的长.

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AB = 10 AD = 15 BAD 的平分线交 BC 于点 E ,交 DC 的延长线于点 F BG AE 于点 G ,若 BG = 8 ,则 ΔCEF 的周长为 (    )

A.16B.17C.24D.25

来源:2020年海南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° CD AB ,垂足为 D AF 平分 CAB ,交 CD 于点 E ,交 CB 于点 F .若 AC = 3 AB = 5 ,则 CE 的长为 (    )

A. 3 2 B. 4 3 C. 5 3 D. 8 5

来源:2018年山东省枣庄市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

(1)某学校“智慧方园”数学社团遇到这样一个题目:

如图1,在 ΔABC 中,点 O 在线段 BC 上, BAO = 30 ° OAC = 75 ° AO = 3 3 BO : CO = 1 : 3 ,求 AB 的长.

经过社团成员讨论发现,过点 B BD / / AC ,交 AO 的延长线于点 D ,通过构造 ΔABD 就可以解决问题(如图 2 )

请回答: ADB =    ° AB =   

(2)请参考以上解决思路,解决问题:

如图3,在四边形 ABCD 中,对角线 AC BD 相交于点 O AC AD AO = 3 3 ABC = ACB = 75 ° BO : OD = 1 : 3 ,求 DC 的长.

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的判定与性质试题