如图,在 中, ,分别以点 、 为圆心,以大于 的长为半径画弧,两弧分别交于点 、 ,作直线 交 点 ;以点 为圆心,适当长为半径画弧,分别交 、 于点 、 ,再分别以点 、 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 ,此时射线 恰好经过点 ,则 度.
如图,已知点 是反比例函数 的图象上的一个动点,连接 ,若将线段 绕点 顺时针旋转 得到线段 ,则点 所在的反比例函数表达式为 .
如图,已知 ,点 , 分别在 , 上,且 ,将射线 绕点 逆时针旋转得到 ,旋转角为 且 ,作点 关于直线 的对称点 ,画直线 交 于点 ,连接 , ,有下列结论:
① ;
② 的大小随着 的变化而变化;
③当 时,四边形 为菱形;
④ 面积的最大值为 ;
其中正确的是 .(把你认为正确结论的序号都填上).
如图,在平面直角坐标系中,△ ,△ ,△ , 都是等腰直角三角形,其直角顶点 , , , 均在直线 上.设△ ,△ ,△ , 的面积分别为 , , , ,依据图形所反映的规律, .
如图, 中,点 为边 的中点,连接 ,将 沿直线 翻折至 所在平面内,得 ,连接 ,分别与边 交于点 ,与 交于点 .若 , ,则 的长为 .
如图, 与 的边 相切,切点为 .将 绕点 按顺时针方向旋转得到△ ,使点 落在 上,边 交线段 于点 .若 ,则
度.
图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形 的对角线 上,时钟中心在矩形 对角线的交点 上.若 ,则 长为 (结果保留根号).
如图,在河对岸有一矩形场地 ,为了估测场地大小,在笔直的河岸 上依次取点 , , ,使 , ,点 , , 在同一直线上.在 点观测 点后,沿 方向走到 点,观测 点发现 .测得 米, 米, 米, ,则场地的边 为 米, 为 米.