如图,在 中, , , 是斜边 上的中线,将 沿 对折,使点 落在点 处,线段 与 相交于点 ,则 等于
A. |
|
B. |
|
C. |
|
D. |
|
我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知 , , ,则正方形 的边长是
A. |
|
B. |
2 |
C. |
|
D. |
4 |
如图,将等边 绕点 顺时针旋转 得到 ,连接 , .则下列结论:
① ;② ;③四边形 是菱形.
其中正确的个数是
A.0B.1C.2D.3
如图,△ ,△ ,△ , 是分别以 , , , 为直角顶点,一条直角边在 轴正半轴上的等腰直角三角形,其斜边的中点 , , , , , , 均在反比例函数 的图象上.则 的值为
A. |
|
B. |
6 |
C. |
|
D. |
|
如图,直角 中, ,点 是 的重心,连接 并延长交 于点 ,过点 作 交 于点 ,连接 交 于点 ,则 的值为
A. B. C. D.
如图,把含 的直角三角板 放置在正方形 中, ,直角顶点 在正方形 的对角线 上,点 , 分别在 和 边上, 与 交于点 ,且点 为 的中点,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 , , , 共线, , ,添加一个条件,不能判断 的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 纸片中, , , ,点 , 分别在 , 上,连结 ,将 沿 翻折,使点 的对应点 落在 的延长线上,若 平分 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形 组成,恰好拼成一个大正方形 .连结 并延长交 于点 .若 , ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中,点 在 上,将矩形沿 折叠,使点 落在 边上的点 处.若 , ,则 的值为
A. B. C. D.
如图,等边三角形 边长是定值,点 是它的外心,过点 任意作一条直线分别交 , 于点 , .将 沿直线 折叠,得到△ ,若 , 分别交 于点 , ,连接 , ,则下列判断错误的是
A.
B.△ 的周长是一个定值
C.四边形 的面积是一个定值
D.四边形 的面积是一个定值
如图,等腰 中,点 , 分别在腰 , 上,添加下列条件,不能判定 的是
A. B. C. D.