如图,在 中, , , , 于点 , 是 的中点,则 的长为
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
如图,在 中, , , ,按下列步骤作图:
步骤1:以点 为圆心,小于 的长为半径作弧分别交 、 于点 、 .
步骤2:分别以点 、 为圆心,大于 的长为半径作弧,两弧交于点 .
步骤3:作射线 交 于点 .则 的长为
A. |
6 |
B. |
|
C. |
|
D. |
|
如图, 、 、 、 是四根长度均为 的火柴棒,点 、 、 共线.若 , ,则线段 的长度是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平面直角坐标系中,矩形 ABCD的顶点 A, C分别在 x轴, y轴的正半轴上,点 , ,若反比例函数 的图象经过点 B,则 k的值为( )
A. |
|
B. |
8 |
C. |
10 |
D. |
|
如图,在 中, , , 于点 , .若 , 分别为 , 的中点,则 的长为
A. |
|
B. |
|
C. |
1 |
D. |
|
已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( )
A.9B.17或22C.17D.22
如图,三角形纸片 , , ,点 为 中点,沿过点 的直线折叠,使点 与点 重合,折痕交 于点 .已知 ,则 的长是
A. |
|
B. |
3 |
C. |
|
D. |
|
如图,在△ABC中, ,点D在CA的延长线上, 于点E, ,则 ( )
A. B. C. D.
两个直角三角板如图摆放,其中 , , , 与 交于点 .若 ,则 的大小为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平行四边形 中, 是 的中点,则下列四个结论:
① ;
②若 , ,则 ;
③若 ,则 ;
④若 ,则 与 全等.
其中正确结论的个数为
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,把含 的直角三角板 放置在正方形 中, ,直角顶点 在正方形 的对角线 上,点 , 分别在 和 边上, 与 交于点 ,且点 为 的中点,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 , , , 共线, , ,添加一个条件,不能判断 的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 纸片中, , , ,点 , 分别在 , 上,连结 ,将 沿 翻折,使点 的对应点 落在 的延长线上,若 平分 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形 组成,恰好拼成一个大正方形 .连结 并延长交 于点 .若 , ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|