在平面直角坐标系 中,将一块含有 角的直角三角板如图放置,直角顶点 的坐标为 ,顶点 的坐标为 ,顶点 恰好落在第一象限的双曲线上,现将直角三角板沿 轴正方向平移,当顶点 恰好落在该双曲线上时停止运动,则此时点 的对应点 的坐标为
A. , B. C. , D.
如图,在△ABC中, ,点D在CA的延长线上, 于点E, ,则 ( )
A. B. C. D.
如图,在 中, ,以 的一边为边画等腰三角形,使得它的第三个顶点在 的其他边上,则可以画出的不同的等腰三角形的个数最多为
A.4B.5C.6D.7
如图,菱形 的对角线 、 相交于点 ,点 为边 的中点,若菱形 的周长为16, ,则 的面积是
A. B.2C. D.4
如图,在矩形 中, , 为 边的中点,将 绕点 顺时针旋转 ,点 的对应点为 ,点 的对应点为 ,过点 作 交 于点 ,连接 、 交于点 ,现有下列结论:
① ;
② ;
③ ;
④点 为 的外心.
其中正确的个数为
A.1个B.2个C.3个D.4个
两个直角三角板如图摆放,其中 , , , 与 交于点 .若 ,则 的大小为
A. |
|
B. |
|
C. |
|
D. |
|
如图,把含 的直角三角板 放置在正方形 中, ,直角顶点 在正方形 的对角线 上,点 , 分别在 和 边上, 与 交于点 ,且点 为 的中点,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 , , , 共线, , ,添加一个条件,不能判断 的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 纸片中, , , ,点 , 分别在 , 上,连结 ,将 沿 翻折,使点 的对应点 落在 的延长线上,若 平分 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形 组成,恰好拼成一个大正方形 .连结 并延长交 于点 .若 , ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中,点 在 上,将矩形沿 折叠,使点 落在 边上的点 处.若 , ,则 的值为
A. B. C. D.