函数 与函数 的图象如图所示,有以下结论:① ;② ;③ ;④方程组 的解为 , ;⑤当 时, .其中正确的是
A.①②③B.②③④C.③④⑤D.②③⑤
已知抛物线 与 轴交于 , 两点(点 在点 的左侧),将这条抛物线向右平移 个单位,平移后的抛物线与 轴交于 , 两点(点 在点 的左侧),若 , 是线段 的三等分点,则 的值为 .
对于函数 ,我们定义 、 为常数).
例如 ,则 .
已知: .
(1)若方程 有两个相等实数根,则 的值为 ;
(2)若方程 有两个正数根,则 的取值范围为 .
二次函数 的大致图象如图所示,顶点坐标为 ,下列结论:① ;② ;③若方程 有两个根 和 ,且 ,则 ;④若方程 有四个根,则这四个根的和为 .其中正确的结论有
A.1个B.2个C.3个D.4个
如图,抛物线 与 轴交于点 和 ,与 轴的正半轴交于点 .下列结论:① ② ③ ④ ,其中正确结论的个数为
A.1个B.2个C.3个D.4个
函数 的图象与 轴交于点 ,顶点坐标为 ,其中 .以下结论正确的是
① ;
②函数 在 和 处的函数值相等;
③函数 的图象与 的函数图象总有两个不同交点;
④函数 在 内既有最大值又有最小值.
A.①③B.①②③C.①④D.②③④
已知关于 的一元二次方程 有实数根.
(1)求 的值;
(2)先作 的图象关于 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线 与变化后的图象有公共点时,求 的最大值和最小值.
已知关于 的一元二次方程 有实数根.
(1)求 的值;
(2)先作 的图象关于 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线 与变化后的图象有公共点时,求 的最大值和最小值.
对于二次函数 ,下列结论错误的是
A.它的图象与 轴有两个交点
B.方程 的两根之积为
C.它的图象的对称轴在 轴的右侧
D. 时, 随 的增大而减小
已知关于 的一元二次方程 ,其中 为常数.
(1)求证:无论 为何值,方程总有两个不相等实数根;
(2)已知函数 的图象不经过第三象限,求 的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求 的最大整数值.