初中数学

如图,抛物线轴交于点,点,且

(1)求抛物线的解析式;

(2)点在抛物线上,且,求点的坐标;

(3)抛物线上两点,点的横坐标为,点的横坐标为.点是抛物线上之间的动点,过点轴的平行线交于点

①求的最大值;

②点关于点的对称点为,当为何值时,四边形为矩形.

来源:2019年四川省南充市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线 y = - 1 3 x 2 + 2 3 3 x + 3 x 轴交于 A B 两点(点 A 在点 B 左侧),与 y 轴交于点 C ,抛物线的顶点为点 E

(1)判断 ΔABC 的形状,并说明理由;

(2)经过 B C 两点的直线交抛物线的对称轴于点 D ,点 P 为直线 BC 上方抛物线上的一动点,当 ΔPCD 的面积最大时, Q 从点 P 出发,先沿适当的路径运动到抛物线的对称轴上点 M 处,再沿垂直于抛物线对称轴的方向运动到 y 轴上的点 N 处,最后沿适当的路径运动到点 A 处停止.当点 Q 的运动路径最短时,求点 N 的坐标及点 Q 经过的最短路径的长;

(3)如图2,平移抛物线,使抛物线的顶点 E 在射线 AE 上移动,点 E 平移后的对应点为点 E ' ,点 A 的对应点为点 A ' ,将 ΔAOC 绕点 O 顺时针旋转至△ A 1 O C 1 的位置,点 A C 的对应点分别为点 A 1 C 1 ,且点 A 1 恰好落在 AC 上,连接 C 1 A ' C 1 E ' ,△ A ' C 1 E ' 是否能为等腰三角形?若能,请求出所有符合条件的点 E ' 的坐标;若不能,请说明理由.

来源:2016年重庆市中考数学试卷(a卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图1,过点的抛物线与直线交于点.点是线段上一动点,过点轴的垂线,垂足为点,交抛物线于点.设的面积为,点的横坐标为

(1)请直接写出的值及抛物线的解析式.

(2)为探究最大时点的位置,甲、乙两同学结合图形给出如下解析:

甲:借助的长与三角形面积公式,求出关于的函数关系式,可确定点的位置.

乙:当点运动到点或点时,的值可看作0,则当点运动到中点时,最大,即最大时,点的中点.

请参考甲的方法求出最大时点的坐标,进而判断乙的猜想是否正确,并说明理由.

(3)拓展探究:如图2,直线与任意抛物线相交于两点,是线段上的一个动点,过点作抛物线对称轴的平行线,交该抛物线于点.当的面积最大时,点一定是线段的中点吗?试作出判断并说明理由.

来源:2015年河南省中考数学试卷(备用卷)
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

已知函数为常数)

(1)当

①点在此函数图象上,求的值;

②求此函数的最大值.

(2)已知线段的两个端点坐标分别为,当此函数的图象与线段只有一个交点时,直接写出的取值范围.

(3)当此函数图象上有4个点到轴的距离等于4,求的取值范围.

来源:2019年吉林省长春市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

设抛物线的解析式为 y = a x 2 ,过点 B 1 ( 1 , 0 ) x 轴的垂线,交抛物线于点 A 1 ( 1 , 2 ) ;过点 B 2 ( 1 2 0 ) x 轴的垂线,交抛物线于点 A 2 ;过点 B n ( ( 1 2 ) n - 1 0 ) ( n 为正整数)作 x 轴的垂线,交抛物线于点 A n ,连接 A n B n + 1 ,得 Rt A n B n B n + 1

(1)求 a 的值;

(2)直接写出线段 A n B n B n B n + 1 的长(用含 n 的式子表示);

(3)在系列 Rt A n B n B n + 1 中,探究下列问题:

①当 n 为何值时, Rt A n B n B n + 1 是等腰直角三角形?

②设 1 k < m n ( k m 均为正整数),问:是否存在 Rt A k B k B k + 1 Rt A m B m B m + 1 相似?若存在,求出其相似比;若不存在,说明理由.

来源:2016年江西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

初中数学二次函数的最值试题