初中数学

小慧根据学习函数的经验,对函数 y = | x - 1 | 的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:

(1)函数 y = | x - 1 | 的自变量 x 的取值范围是           

(2)列表,找出 y x 的几组对应值.

x

- 1

0

1

2

3

y

b

1

0

1

2

其中, b =       

(3)在平面直角坐标系 xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;

(4)写出该函数的一条性质:      

来源:2017年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

一次函数 y = kx + b 的图象与 x 轴的负半轴相交于点 A ,与 y 轴的正半轴相交于点 B ,且 sin ABO = 3 2 ΔOAB 的外接圆的圆心 M 的横坐标为 - 3

(1)求一次函数的解析式;

(2)求图中阴影部分的面积.

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知点 P ( x 0 y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.

例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.

解:因为直线 y = 3 x + 7 ,其中 k = 3 b = 7

所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5

根据以上材料,解答下列问题:

(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;

(2)已知 Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 Q 与直线 y = 3 x + 9 的位置关系并说明理由;

(3)已知直线 y = - 2 x + 4 y = - 2 x - 6 平行,求这两条直线之间的距离.

来源:2016年山东省济宁市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

操作:“如图1, P 是平面直角坐标系中一点 ( x 轴上的点除外),过点 P PC x 轴于点 C ,点 C 绕点 P 逆时针旋转 60 ° 得到点 Q .”我们将此由点 P 得到点 Q 的操作称为点的 T 变换.

(1)点 P ( a , b ) 经过 T 变换后得到的点 Q 的坐标为   ;若点 M 经过 T 变换后得到点 N ( 6 , - 3 ) ,则点 M 的坐标为       

(2) A 是函数 y = 3 2 x 图象上异于原点 O 的任意一点,经过 T 变换后得到点 B

①求经过点 O ,点 B 的直线的函数表达式;

②如图2,直线 AB y 轴于点 D ,求 ΔOAB 的面积与 ΔOAD 的面积之比.

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

阅读理解:

如图①,图形 l 外一点 P 与图形 l 上各点连接的所有线段中,若线段 P A 1 最短,则线段 P A 1 的长度称为点 P 到图形 l 的距离.

例如:图②中,线段 P 1 A 的长度是点 P 1 到线段 AB 的距离;线段 P 2 H 的长度是点 P 2 到线段 AB 的距离.

解决问题:

如图③,平面直角坐标系 xOy 中,点 A B 的坐标分别为 ( 8 , 4 ) ( 12 , 7 ) ,点 P 从原点 O 出发,以每秒1个单位长度的速度向 x 轴正方向运动了 t 秒.

(1)当 t = 4 时,求点 P 到线段 AB 的距离;

(2) t 为何值时,点 P 到线段 AB 的距离为5?

(3) t 满足什么条件时,点 P 到线段 AB 的距离不超过6?(直接写出此小题的结果)

来源:2017年江苏省泰州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学一次函数综合题计算题