已知点 为某个封闭图形边界上一定点,动点 从点 出发,沿其边界顺时针匀速运动一周,设点 的运动时间为 ,线段 的长度为 ,表示 与 的函数图象大致如图所示,则该封闭图形可能是
A.B.
C.D.
如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A.B.
C.D.
如图, , 是半径为1的 上两点,且 ,点 从点 出发,在 上以每秒一个单位长度的速度匀速运动,回到点 运动结束,设运动时间为 (单位: ,弦 的长为 ,那么下列图象中可能表示 与 函数关系的是
A.①B.③C.②或④D.①或③
如图,点 P在直线 AB上方,且∠ APB=90°, PC⊥ AB于 C,若线段 AB=6, AC= x, S △ PAB= y,则 y与 x的函数关系图象大致是( )
A. |
|
B. |
|
C. |
|
D. |
|
如图1,矩形 中,点 为 的中点,点 沿 从点 运动到点 ,设 , 两点间的距离为 , ,图2是点 运动时 随 变化的关系图象,则 的长为
A. |
4 |
B. |
5 |
C. |
6 |
D. |
7 |
如图,在平面直角坐标系中,四边形 ABCD是菱形,点 B的坐标是(0,4),点 D的坐标 是(8 ,4),点 M和点 N是两个动点,其中点 M从点 B出发,沿 BA以每秒2个单位长度的速度做匀速运动,到点 A后停止,同时点 N从点 B出发,沿折线 BC→ CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设 M, N两点的运动时间为 x,△ BMN的面积为 y,下列图象中能表示 y与 x的函数关系的图象大致是( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,正方形 边长是 ,点 从点 出发,沿 的路径运动,到 点停止运动,点 从点 出发,在 延长线上向右运动,点 与点 同时出发,点 停止运动时,点 也停止运动,点 ,点 的运动速度都是 ,下列函数图象中能反映 的面积 与运动时间 的函数关系的是
A.B.
C.D.
如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )
A.B.
C.D.
如图,在菱形 中, , .动点 从点 出发,以每秒1个单位长度的速度沿折线 运动到点 ,同时动点 从点 出发,以相同速度沿折线 运动到点 ,当一个点停止运动时,另一点也随之停止.设 的面积为 ,运动时间为 秒.则下列图象能大致反映 与 之间函数关系的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在正方形 ABCD中,点 P从点 A出发,沿着正方形的边顺时针方向运动一周,则△ APC的面积 y与点 P运动的路程 x之间形成的函数关系图象大致是( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中, , .点 从点 出发,以 的速度在矩形的边上沿 运动,点 与点 重合时停止运动.设运动的时间为 (单位: , 的面积为 (单位: ,则 随 变化的函数图象大致为
A. |
|
B. |
|
C. |
|
D. |
|
如图, 为矩形 的对角线,已知 , ,点 沿折线 以每秒1个单位长度的速度运动(运动到 点停止),过点 作 于点 ,则 的面积 与点 运动的路程 间的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 的坐标为 ,点 是 轴正半轴上的一动点,以 为边作 ,使 , ,设点 的横坐标为 ,点 的纵坐标为 ,能表示 与 的函数关系的图象大致是
A.B.
C.D.
如图,边长为2的正 的边 在直线 上,两条距离为1的平行直线 和 垂直于直线 , 和 同时向右移动 的起始位置在 点),速度均为每秒1个单位,运动时间为 (秒 ,直到 到达 点停止,在 和 向右移动的过程中,记 夹在 和 之间的部分的面积为 ,则 关于 的函数图象大致为
A.B.
C.D.