如图,在矩形 中, , .点 从点 出发,以 的速度在矩形的边上沿 运动,点 与点 重合时停止运动.设运动的时间为 (单位: , 的面积为 (单位: ,则 随 变化的函数图象大致为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在菱形 中, , ,点 , 同时从点 出发,点 以 的速度沿 的方向运动,点 以 的速度沿 的方向运动,当其中一点到达 点时,两点停止运动.设运动时间为 , 的面积为 ,则下列图象中能大致反映 与 之间函数关系的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,四边形 中,已知 , 与 之间的距离为4, , , ,点 , 同时由 点出发,分别沿边 ,折线 向终点 方向移动,在移动过程中始终保持 ,已知点 的移动速度为每秒1个单位长度,设点 的移动时间为 秒, 的面积为 ,则能反映 与 之间函数关系的图象是
A. |
|
B. |
|
C. |
|
D. |
|
如图(1),在平面直角坐标系中,矩形 在第一象限,且 轴,直线 沿 轴正方向平移,在平移过程中,直线被矩形 截得的线段长为 ,直线在 轴上平移的距离为 , 、 间的函数关系图象如图(2)所示,那么矩形 的面积为
A. |
|
B. |
|
C. |
8 |
D. |
10 |
如图,在矩形 中, , ,动点 , 同时从点 出发,点 沿 的路径运动,点 沿 的路径运动,点 , 的运动速度相同,当点 到达点 时,点 也随之停止运动,连接 .设点 的运动路程为 , 为 ,则 关于 的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中, , ,动点 沿折线 运动到点 ,同时动点 沿折线 运动到点 ,点 , 在矩形边上的运动速度为每秒1个单位长度,点 , 在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为 秒, 的面积为 ,则下列图象能大致反映 与 之间函数关系的是
A. |
|
B. |
|
C. |
|
D. |
|
如图, 为矩形 的对角线,已知 , ,点 沿折线 以每秒1个单位长度的速度运动(运动到 点停止),过点 作 于点 ,则 的面积 与点 运动的路程 间的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图1,矩形 中,点 为 的中点,点 沿 从点 运动到点 ,设 , 两点间的距离为 , ,图2是点 运动时 随 变化的关系图象,则 的长为
A. |
4 |
B. |
5 |
C. |
6 |
D. |
7 |
图(1),在 中, ,点 从点 出发,沿三角形的边以 秒的速度逆时针运动一周,图(2)是点 运动时,线段 的长度 随运动时间 (秒 变化的关系图象,则图(2)中 点的坐标是
A. |
|
B. |
|
C. |
|
D. |
|
如图1,在 中, , 于点 .动点 从 点出发,沿折线 方向运动,运动到点 停止.设点 的运动路程为 , 的面积为 , 与 的函数图象如图2,则 的长为
A. |
3 |
B. |
6 |
C. |
8 |
D. |
9 |
如图1,点 从 的顶点 出发,沿 匀速运动到点 ,图2是点 运动时,线段 的长度 随时间 变化的关系图象,其中 是曲线部分的最低点,则 的面积是
A.12B.24C.36D.48
如图1,点 从 的顶点 出发,沿 匀速运动到点 ,图2是点 运动时线段 的长度 随时间 变化的关系图象,其中点 为曲线部分的最低点,则 的边 的长度为
A.12B.8C.10D.13
如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度 (单位: 与运动时间 (单位: 的函数图象如图2,则该小球的运动路程 (单位: 与运动时间 (单位: 之间的函数图象大致是
A.B.
C.D.
如图, 和 都是边长为2的等边三角形,它们的边 , 在同一条直线 上,点 , 重合.现将 沿着直线 向右移动,直至点 与 重合时停止移动.在此过程中,设点 移动的距离为 ,两个三角形重叠部分的面积为 ,则 随 变化的函数图象大致为
A.
B.
C.
D.