如图,在矩形 中,点 从点 出发,沿着矩形的边顺时针方向运动一周回到点 ,则点 、 、 围成的图形面积 与点 运动路程 之间形成的函数关系式的大致图象是
A.B.
C.D.
如图,已知矩形 中, , .动点 在边 上从点 向 运动,速度为 ;同时动点 从点 出发,沿折线 运动,速度为 .当一个点到达终点时,另一个点随之停止运动.设点 运动的时间为 , 的面积为 ,则描述 与时间 的函数关系的图象大致是
A.B.
C.D.
如图,在矩形 中, , ,动点 , 同时从点 出发,点 沿 的路径运动,点 沿 的路径运动,点 , 的运动速度相同,当点 到达点 时,点 也随之停止运动,连接 .设点 的运动路程为 , 为 ,则 关于 的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中, , .点 从点 出发,以 的速度在矩形的边上沿 运动,点 与点 重合时停止运动.设运动的时间为 (单位: , 的面积为 (单位: ,则 随 变化的函数图象大致为
A. |
|
B. |
|
C. |
|
D. |
|
如图,边长为4个单位长度的正方形 的边 与等腰直角三角形 的斜边 重合, 以每秒1个单位长度的速度沿 向右匀速运动(保持 ,当点 运动到 边上时 停止运动,设 的运动时间为 秒, 与正方形 重叠部分的面积为 ,则 关于 的函数大致图象为
A.B.
C.D.
如图1,点 从 的顶点 出发,沿 匀速运动到点 ,图2是点 运动时线段 的长度 随时间 变化的关系图象,其中点 为曲线部分的最低点,则 的边 的长度为
A.12B.8C.10D.13
如图,平行四边形 中,对角线 、 相交于点 ,且 , , 是对角线 上任意一点,过点 作 ,与平行四边形的两条边分别交于点 、 .设 , ,则能大致表示 与 之间关系的图象为
A.
B.
C.
D.
如图,在边长为2的正方形 中剪去一个边长为1的小正方形 ,动点 从点 出发,沿 的路线绕多边形的边匀速运动到点 时停止(不含点 和点 ,则 的面积 随着时间 变化的函数图象大致是
A.B.C.D.
如图,在正方形 中, ,动点 自 点出发沿 方向以每秒 的速度运动,同时动点 自 点出发沿折线 以每秒 的速度运动,到达 点时运动同时停止,设 的面积为 ,运动时间为 (秒 ,则下列图象中能大致反映 与 之间函数关系的是
A.B.
C.D.
如图, 和 都是边长为2的等边三角形,它们的边 , 在同一条直线 上,点 , 重合.现将 沿着直线 向右移动,直至点 与 重合时停止移动.在此过程中,设点 移动的距离为 ,两个三角形重叠部分的面积为 ,则 随 变化的函数图象大致为
A.
B.
C.
D.
如图, ,点 从 点出发,以 的速度沿 的角平分线向右运动,在运动过程中,以 为圆心的圆始终保持与 的两边相切,设 的面积为 ,则 的面积 与圆心 运动的时间 的函数图象大致为
A.B.
C.D.
如图,边长为2的正 的边 在直线 上,两条距离为1的平行直线 和 垂直于直线 , 和 同时向右移动 的起始位置在 点),速度均为每秒1个单位,运动时间为 (秒 ,直到 到达 点停止,在 和 向右移动的过程中,记 夹在 和 之间的部分的面积为 ,则 关于 的函数图象大致为
A.B.
C.D.
如图, 为矩形 的对角线,已知 , ,点 沿折线 以每秒1个单位长度的速度运动(运动到 点停止),过点 作 于点 ,则 的面积 与点 运动的路程 间的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 的坐标为 ,点 是 轴正半轴上的一动点,以 为边作 ,使 , ,设点 的横坐标为 ,点 的纵坐标为 ,能表示 与 的函数关系的图象大致是
A.B.
C.D.