如图,平面直角坐标系中, 经过三点 , , ,点 是 上的一动点.当点 到弦 的距离最大时, 的值是
A.2B.3C.4D.5
我们把1,1,2,3,5,8,13,21, 这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作 圆弧 , , , 得到斐波那契螺旋线,然后顺次连接 , , , 得到螺旋折线(如图),已知点 , , ,则该折线上的点 的坐标为
A. B. C. D.
已知 、 、 为常数,点 在第二象限,则关于 的方程 根的情况是
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.无法判断
在平面直角坐标系中,点 , .以 为一边在第一象限作正方形 ,则对角线 所在直线的解析式为
A. |
|
B. |
|
C. |
|
D. |
|
如图,一直线与两坐标轴的正半轴分别交于 , 两点, 是线段 上任意一点(不包括端点),过 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是
A. B. C. D.
在平面直角坐标系中,点 关于原点的对称点在
A.第一象限B.第二象限C.第三象限D.第四象限
如图,在 中, ,边 在 轴上,顶点 , 的坐标分别为 和 .将正方形 沿 轴向右平移,当点 落在 边上时,点 的坐标为
A. , B. C. , D.
如图,等腰直角三角形 的直角顶点 与平面直角坐标系的坐标原点 重合, , 分别在坐标轴上, , 在 轴正半轴上沿顺时针方向作无滑动的滚动,在滚动过程中,当点 第一次落在 轴正半轴上时,点 的对应点 的横坐标是
A.2B.3C. D.
在平面直角坐标系内,以原点 为圆心,1为半径作圆,点 在直线 上运动,过点 作该圆的一条切线,切点为 ,则 的最小值为
A.3B.2C. D.
如图,在直角坐标系中,菱形 的顶点 , , 在坐标轴上,若点 的坐标为 , ,则点 的坐标为
A. |
|
B. |
, |
C. |
|
D. |
|
已知直线 与 轴、 轴分别交于 、 两点,点 是第一象限内的点,若 为等腰直角三角形,则点 的坐标为
A. |
|
B. |
或 |
C. |
或 或 |
D. |
或 或 或 |
如图,四边形 是正方形, , 两点的坐标分别是 , ,点 在第一象限,则点 的坐标是
A. B. C. D.