某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)
某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的 ,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球 m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润 W(元)与甲种羽毛球进货量 m(筒)之间的函数关系式,并说明当 m为何值时所获利润最大?最大利润是多少?
“绿水青山就是金山银山”,为保护生态环境, , 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄 |
清理养鱼网箱人数 人 |
清理捕鱼网箱人数 人 |
总支出 元 |
|
15 |
9 |
57000 |
|
10 |
16 |
68000 |
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.
(1)施工方共有多少种租车方案?
(2)哪种租车方案费用最低,最低费用是多少?
2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.
(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?
(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?
(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元 次,一辆小型渣土运输车运输花费300元 次,为了节约开支,该公司应选择哪种方案划算?
某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于 ,则这种品牌衬衫最多可以打几折?
A. |
8 |
B. |
6 |
C. |
7 |
D. |
9 |
为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对 、 两类学校进行改扩建,根据预算,改扩建2所 类学校和3所 类学校共需资金7800万元,改扩建3所 类学校和1所 类学校共需资金5400万元.
(1)改扩建1所 类学校和1所 类学校所需资金分别是多少万元?
(2)该县计划改扩建 、 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到 、 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?
某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.
(1)设该商店购进甲型平板电脑 台,请写出全部售出后该商店获利 与 之间函数表达式.
(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.
为积极响应政府提出的“绿色发展 低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.
(1)求男式单车和女式单车的单价;
(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?
运行程序如图所示,规定:从“输入一个值 ”到“结果是否 ”为一次程序操作,如果程序操作进行了三次才停止,那么 的取值范围是
A. B. C. D.
为增强学生体质,丰富学生课余活动,学校决定添置一批篮球和足球.甲、乙两家商场以相同的价格出售同种品牌的篮球和足球,已知篮球价格为200元 个,足球价格为150元 个.
(1)若学校计划用不超过3550元的总费用购买这款篮球和足球共20个,且购买篮球的数量多于购买足球数量的 .学校有哪几种购买方案?
(2)若甲、乙两商场各自推出不同的优惠方案:甲商场累计购物超过500元后,超出500元的部分按 收费;乙商场累计购物超过2000元后,超出2000元的部分按 收费.若学校按(1)中的方案购买,学校到哪家商场购买花费少?
为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.
(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;
(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?
江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.
已知 是正整数,若一个三角形的三边长分别是 、 、 ,则满足条件的 的值有
A.4个B.5个C.6个D.7个
为迎接“国家卫生城市”复检,某市环卫局准备购买 、 两种型号的垃圾箱,通过市场调研得知:购买3个 型垃圾箱和2个 型垃圾箱共需540元;购买2个 型垃圾箱比购买3个 型垃圾箱少用160元.
(1)每个 型垃圾箱和 型垃圾箱各多少元?
(2)现需要购买 , 两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责 型垃圾箱的安装,每天可以安装15个,乙负责 型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买 型垃圾箱不少于150个时,该型号的产品可以打九折;若购买 型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买 型和 型垃圾箱各多少个?最低费用是多少元?