初中数学

《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛  斛米.(注斛是古代一种容量单位)

来源:2019年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

解方程组: x + y = 1 4 x + y = 10

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

《九章算术》中记载:"今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?"其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为 x 人,羊价为 y 钱,根据题意,可列方程组为 (    )

A.

y = 5 x + 45 y = 7 x + 3

B.

y = 5 x - 45 y = 7 x + 3

C.

y = 5 x + 45 y = 7 x - 3

D.

y = 5 x - 45 y = 7 x - 3

来源:2018年河南省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.

(1)求每辆汽车可装载柠檬或柚子各多少吨?

(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?

来源:2017年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

某服装专卖店计划购进两种型号的精品女装.已知2件型女装和3件型女装共需5600元;1件型女装和2件型女装共需3400元.

(1)求型女装的单价

(2)专卖店购进两种型号的女装共60件,其中型的件数不少于型件数的2倍,如果型女装打八折,那么该专卖店至少需要准备多少贷款?

来源:2017年河南省中考数学试卷(备用卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

解方程组: x + y = 1 4 x + y = 10

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:

污水处理器型号

A

B

处理污水能力(吨 / 月)

240

180

已知商家售出的2台 A 型、3台 B 型污水处理器的总价为44万元,售出的1台 A 型、4台 B 型污水处理器的总价为42万元.

(1)求每台 A 型、 B 型污水处理器的价格;

(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对 A B 两个玉米品种进行实验种植对比研究.去年 A B 两个品种各种植了10亩.收获后 A B 两个品种的售价均为 2 . 4 元/kg,且 B 品种的平均亩产量比A品种高100千克, A B 两个品种全部售出后总收入为 21600 元.

(1)求 A B 两个品种去年平均亩产量分别是多少千克?

(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计AB两个品种平均亩产量将在去年的基础上分别增加 a % 2 a % .由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨 a % ,而A品种的售价保持不变, A B 两个品种全部售出后总收入将增加 20 9 a % .求a的值.

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱 A 品种芒果和3箱 B 品种芒果,共花费450元;后又购买了1箱 A 品种芒果和2箱 B 品种芒果,共花费275元(每次两种芒果的售价都不变).

(1)问 A 品种芒果和 B 品种芒果的售价分别是每箱多少元?

(2)现要购买两种芒果共18箱,要求 B 品种芒果的数量不少于 A 品种芒果数量的2倍,但不超过 A 品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

(1)解不等式: 1 2 ( x - 1 ) > 2 + 3 x

(2)解方程组: x + y = 5 2 x + 3 y = 13

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

(1)解不等式: 1 2 ( x - 1 ) > 2 + 3 x

(2)解方程组: x + y = 5 2 x + 3 y = 13

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

端午节前夕,某超市用1680元购进两种商品共60件,其中型商品每件24元,型商品每件36元.设购买型商品件、型商品件,依题意列方程组正确的是  

A.B.

C.D.

来源:2017年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

怡然美食店的 A B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.

(1)该店每天卖出这两种菜品共多少份?

(2)该店为了增加利润,准备降低 A 种菜品的售价,同时提高 B 种菜品的售价,售卖时发现, A 种菜品售价每降0.5元可多卖1份; B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?

来源:2017年江苏省泰州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

方程组 x - y = 3 3 x - 8 y = 14 的解为 (    )

A.

x = - 1 y = 2

B.

x = 1 y = - 2

C.

x = - 2 y = 1

D.

x = 2 y = - 1

来源:2018年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为  

来源:2019年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

初中数学二元一次方程组试题