假设一家旅馆一共有30个房间,分别编以1-30号三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻数字必须使服务员很容易辨认是哪一个房间的钥匙,而使外人不容易猜到,现在有一种编码方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数,那么刻的数是36的钥匙所对应的原来房间应该是___________号.
已知f(x)=1+
,其中f(a)表示当x=a时代数式的值,如f(1)=1+
,f(2)=1+
,
f(a)=1+
,则f(1)·f(2)·f(3)…·f(100)= .
将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,则第10个“龟图”中的“○”的个数为 .
观察下列等式:
第1个等式:x1=
;
第2个等式:x2=
;
第3个等式:x3=
;
第4个等式:x4=
;
则xl+x2+x3+…+x10= .
将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),数轴上的两点A、B恰好与刻度尺上的“0cm”和“7cm”分别对应,若点A表示的数为﹣2.3,则点B表示的数应为 .
如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从4这点开始跳,则经2015次跳后它停在数 对应的点上.
探索规律观察下面由※组成的图案和算式,解答问题
(1)请计算1+3+5+7+9+11=__________;
(2)请猜想1+3+5+7+9+…+19=__________;
(3)请猜想1+3+5+7+9+…+(2n﹣1)=__________;
(4)请用上述规律计算:21+23+25+…+99.
(本题8分)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上数字的乘积最小,乘积的最小值为 ;
(2)从中取出4张卡片,用学过的运算方法,使结果为24。写出运算式子。
(写出一种即可)算24的式子为 。
(本题12分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造正方形:
再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、 …相应长方形的周长如下表所示:
仔细观察图形,上表中的x= ,y= .
若按此规律继续作长方形,则序号为⑧的长方形周长是 .
如图,在数轴上A点表示数﹣2,B点表示数6,若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,则经过 秒,甲、乙两小球到原点的距离相等.