(本题10分)某出租车一天下午以地为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:)依先后顺序记录如下:,,,,,,,,,.将最后一名乘客送到目的地,出租车离地多远?在地的什么方向?若每千米的价格为元,司机一个下午的营业额是多少?
把下列各数在数轴上表示出来,并用“<”号连接.
, , 0, -|-2︳, 2.5 |-3︳
探索性问题:
已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题:
(1)请直接写出a、b、c的值.a= ,b= ,c= ;
(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.
①t秒钟过后,AC的长度为 (用t的关系式表示);
②请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为 ( ).
A.3 | B.2 | C.0 | D.-1 |
今年我国和俄罗斯联合军事演习中,一核潜艇在海下时而上升,时而下降.核潜艇的初始位置在海平面下500米,下面是核潜艇在某段时间内运动情况(把上升记为“+”,下降记为“-”,单位:米):-280,-20,30,20,-50,60,-70
(1)现在核潜艇处在什么位置?
(2)假如核潜艇每上升或下降1米核动力装置所提供的能量相当于20升汽油燃烧所产生的能量,那么在这一时刻内核动力装置所提供的能量相当于多少升汽油燃烧所产生的能量?
(本题10分))如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2r, 保留).
(1)把圆片沿数轴滚动1周,点Q到达数轴上点A的位置,点A表示的数是___;
(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2, -1, -5, +4, +3, -2.
①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?
②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?
一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10.
(1)守门员最后是否回到了球门线的位置?
(2)在练习过程中,守门员离开球门线最远距离是多少米?
(3)守门员全部练习结束后,他共跑了多少米?
有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4可作运算:(1+2+3)×4=24.[注意上述运算与4×(2+3+1)应视为相同方法的运算].现有四个有理数3,4,﹣6,10,运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:
(1) ;
(2) ;
(3) .
初一年级举行篮球循环赛,规则是:胜一场得2分,平一场得0分,负一场得﹣2分,比赛结果是初一(3)班2胜1平4负,问该班最后得分是多少?
某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:
+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)这10名同学中最高分是多少?最低分是多少?
(2)10名同学中,低于80分的所占的百分比是多少?
(3)10名同学的平均成绩是多少?
某股民上星期五买进某公司股票1000股,每股25元,下表为本周内每日该股票的涨跌情况:(单价:元)
星期 |
一 |
二 |
三 |
四 |
五 |
每股涨跌 (与前一天比较) |
+2 |
-0.5 |
+1.5 |
–1.8 |
+0.8 |
(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价是每股多少元?
(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期五才将股票全部卖出,请算算他本周的收益如何?
甲、乙两辆汽车分别从A、B两地同时相向而行.已知甲车行完全程需要8小时,乙车行完全程需要6小时,如果两车各行3小时,两车之间的距离占全程的几分之几?如果两车各行4小时,两车之间的距离占全程的几分之几?
有理数a、b、c在数轴上的位置如图:
(1)判断正负,用“>”或“<”填空:b-c 0,a+b 0,c-a 0;
(2)化简:.