有理数a、b、c在数轴上的位置如图: (1)判断正负,用“>”或“<”填空:b-c 0,a+b 0,c-a 0; (2)化简:.
已知,求代数式的值.
求不等式≤的负整数解.
如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于点A(-1,0)、B(3,0)两点,直线y=x-2与x轴交于点D.与y轴交于点C.点P是x轴下方的抛物[线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式:(2)若PE=3EF,求m的值;(3)连接PC,是否存在点P,使△PCE为等腰直角三角形?若存在,请直接写出相应的点P的横坐标m的值;若不存在,请说明理由.
(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.
某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示.(l)甲厂的制版费为____千元,印刷费为平均每个 元,甲厂的费用yl与证书数量x之间的函数关系式为 ,(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个 元;(3)当印制证书数量超过2干个时,求乙厂的总费用y2与证书数量x之间的函数关系[式;(4)若该单位需印制证书数量为8干个,该单位应选择哪个厂更节省费用?请说明理由.